A peer-reviewed journal published by K. N. Toosi University of Technology

Document Type : Research Article

Authors

1 Department of Atomic and Molecular Physics, Faculty of Science, University of Mazandaran, Babolsar, Iran

2 Department of Physics and Institute for Plasma Research, Kharazmi University, 49 Dr. Mofatteh Avenue, Tehran, Iran

3 Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina, 84248 Bratislava, Slovakia

4 Plasma Technology Research Core, Faculty of Science, University of Mazandaran, Babolsar, Iran

Abstract

Plasma technology has undeniably revolutionized industrial processes in recent decades. Atmospheric pressure plasma (APP) has emerged as a prominent and widely applicable tool in various scientific disciplines. Notably, plasma-assisted flow control has become a subject of intense interest, particularly applying surface dielectric barrier discharge (SDBD) plasma actuators for aerodynamic flow control. In this study, a two-dimensional model of the SDBD plasma actuator is developed using the COMSOL Multiphysics program, incorporating air gas discharge reactions with N2/O2/Ar gases in specific ratios (0.78, 0.21, 0.01). The investigation focuses on the impact of dielectric materials (mica, silica glass, quartz, and polytetrafluoroethylene (PTFE)) on plasma characteristics and body force within the plasma actuator under constant input parameters. Moreover, the study explores how variable pressure (760, 660, and 560 torr) in different applications influences plasma properties, ultimately affecting the magnitude of the body force in the plasma actuator. These findings contribute to optimizing plasma technology for flow control applications and enhance industrial efficiency and performance.

Highlights

  • Impact of dielectric materials on plasma characteristics and body force in an SDBD plasma actuator.
  • The rate of species generation in the plasma actuator is significantly influenced by the dielectric substance.
  • Changing the dielectric material does not make a significant difference in electron temperature.
  • Electron density changes in response to the change in the dielectric material.
  • Ion density is affected by the dielectric material, with mica having the highest ion density and PTFE having the lowest.

Keywords

Abdelraouf, H., Elmekawy, A. M. N., and Kassab, S. Z. (2020). Simulations of flow separation control numerically using different plasma actuator models. Alexandria Engineering Journal, 59(5):3881–3896.
Abdollahzadeh, M., Páscoa, J., and Oliveira, P. (2012). Numerical modeling of boundary layer control using dielectric barrier discharge. In MEFTE IV Conferencia Nacional em Mecanica de Fluidos.
Assadi, I., Guesmi, A., Baaloudj, O., et al. (2022). Review on inactivation of airborne viruses using non-thermal plasma technologies: From MS2 to coronavirus. Environmental Science and Pollution Research, pages 1–13.
Benard, N. and Moreau, E. (2014). Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control. Experiments in Fluids, 55:1–43.
Boeuf, J.-P., Lagmich, Y., Unfer, T., et al. (2007). Electrohydrodynamic force in dielectric barrier discharge plasma actuators. Journal of Physics D: Applied Physics, 40(3):652.
Da Ponte, G., Sardella, E., Fanelli, F., et al. (2011). Atmospheric pressure plasma deposition of organic films of biomedical interest. Surface and Coatings Technology, 205:S525–S528.
Do, H., Kim, W., Mungal, M., et al. (2007). Bluff body flow separation control using surface dielectric barrier discharges. In 45th AIAA Aerospace Sciences Meeting and Exhibit, page 939.
Fridman, A. and Kennedy, L. (2016). Nonequilibrium cold atmospheric pressure discharges. Plasma Physics and Engineering, pages 561–611.
Hagelaar, G. (2010). BOLSIG+ Electron Boltzmann equation solver. Laboratoire Plasma et Conversion d’Energie (LAPLACE).
Hagelaar, G. and Pitchford, L. C. (2005). Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Science and Technology, 14(4):722.
Huang, J., Corke, T. C., and Thomas, F. O. (2006). Plasma actuators for separation control of low-pressure turbine blades. AIAA Journal, 44(1):51–57.
Jayaraman, B. and Shyy, W. (2008). Modeling of dielectric barrier discharge-induced fluid dynamics and heat transfer. Progress in Aerospace Sciences, 44(3):139–191.
Kazemi, M., Ghanooni, P., Mani, M., et al. (2021). Drag reduction of 3D bluff body using SDBD plasma actuators. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 235(5):1461–1480.
Keidar, M. and Beilis, I. (2013). Plasma engineering: applications from aerospace to bio and nanotechnology. Academic Press.
Lieberman, M. A. and Lichtenberg, A. J. (1994). Principles of plasma discharges and materials processing. MRS Bulletin, 30(12):899–901.
Likhanskii, A., Shneider, M., Opaits, D., et al. (2007). Numerical modeling of DBD plasma actuators and the induced air flow. In 38th AIAA Plasma dynamics and Lasers Conference In conjunction with the 16th International Conference on MHD Energy Conversion, page 4533.
Likhanskii, A. V., Shneider, M. N., Macheret, S. O., et al. (2008). Modeling of dielectric barrier discharge plasma actuator in air. Journal of Applied Physics, 103(5).
Little, J., Takashima, K., Nishihara, M., et al. (2010). High lift airfoil leading edge separation control with nanosecond pulse DBD plasma actuators. In 5th Flow Control Conference, page 4256.
LXcat (2023). LXcat, University of Toulouse. www.lxcat.net.
Mahdavi, H. and Sohbatzadeh, F. (2019). The role of non-linear body force in production of electric wind in an asymmetric surface dielectric barrier discharge. Physica Scripta, 94(8):085204.
Mehrabifard, R. (2023). Two-dimensional simulation of Argon dielectric barrier discharge (DBD) in plasma actuator structure with COMSOL Multiphysics. arXiv preprint arXiv:2304.05698.
Mehrabifard, R., Kabarkouhi, Z., Rezaei, F., et al. (2023). Physical understanding of the static magnetic field’s synergistic enhancement of cold atmospheric pressure plasma treatment. arXiv preprint arXiv:2304.05833.
Mehrabifard, R., Mehdian, H., and Bakhshzadmahmoudi, M. (2017). Effect of non-thermal atmospheric pressure plasma on MDA-MB-231 breast cancer cells. Pharmaceutical and Biomedical Research, 3(3):12–16.
Mehrabifard, R., Mehdian, H., Hajisharifi, K., et al. (2020). Improving cold atmospheric pressure plasma efficacy on breast cancer cells control-ability and mortality using vitamin c and static magnetic field. Plasma Chemistry and Plasma Processing, 40:511–526.
Moreau, E. (2007). Airflow control by non-thermal plasma actuators. Journal of Physics D: applied physics, 40(3):605. Neretti, G., Cristofolini, A., and Borghi, C. A. (2014). Experimental investigation on a vectorized aerodynamic dielectric barrier discharge plasma actuator array. Journal of Applied Physics, 115(16).
Neretti, G., Cristofolini, A., Borghi, C. A., et al. (2012). Experimental results in DBD plasma actuators for air flow control. IEEE Transactions on Plasma Science, 40(6):1678–1687.
Omidi, J. and Mazaheri, K. (2020). Micro-plasma actuator mechanisms in interaction with fluid flow for wind energy applications: Physical parameters. Physics of Fluids, 32(7).
Pitchford, L. C., Alves, L. L., Bartschat, K., et al. (2017). Lxcat: An open-access, web-based platform for data needed for modeling low temperature plasmas. Plasma Processes and Polymers, 14(1-2):1600098.
Porter, C., McLaughlin, T., Enloe, C., et al. (2007). Boundary layer control using a DBD plasma actuator. In 45th AIAA Aerospace Sciences Meeting and Exhibit, page 786.
Post, M. L. and Corke, T. C. (2006). Separation control using plasma actuators: Dynamic stall vortex control on oscillating airfoil. AIAA Journal, 44(12):3125–3135.
Sakiyama, Y., Graves, D. B., Chang, H.-W., et al. (2012). Plasma chemistry model of surface microdischarge in humid air and dynamics of reactive neutral species. Journal of Physics D: Applied Physics, 45(42):425201.
Sohbatzadeh, F. and Soltani, H. (2018). Time-dependent one-dimensional simulation of atmospheric dielectric barrier discharge in N2/O2/H2O using COMSOL Multiphysics. Journal of Theoretical and Applied Physics, 12:53–63.
Stafford, D. S. and Kushner, M. J. (2004). O-2 ((1) Delta) production in He/O-2 mixtures in flowing low pressure plasmas. Journal of Applied Physics, 96(5):2451–2465.
Szulga, N., Vermeersch, O., Forte, M., et al. (2015). Experimental and numerical study of boundary layer transition control over an airfoil using a DBD plasma actuator. Procedia IUTAM, 14:403–412.
Tanaka, H., Mizuno, M., Ishikawa, K., et al. (2015). Plasma with high electron density and plasma-activated medium for cancer treatment. Clinical Plasma Medicine, 3(2):72–76.
Tehrani, D. S., Abdizadeh, G., and Noori, S. (2022). Numerical modeling of dielectric barrier discharge actuators based on the properties of low-frequency plasmons. Scientific Reports, 12(1):10378.
Thomas, F. O., Kozlov, A., and Corke, T. C. (2008). Plasma actuators for cylinder flow control and noise reduction. AIAA Journal, 46(8):1921–1931.
Touchard, G. (2008). Plasma actuators for aeronautics applications-state of art review. International Journal of Plasma Environmental Science and Technology, 2(1):1–24.
Venezia, R. A., Orrico, M., Houston, E., et al. (2008). Lethal activity of nonthermal plasma sterilization against microorganisms. Infection Control & Hospital Epidemiology, 29(5):430–436.
Yu, H., Cui, X., Li, G., et al. (2023). Numerical investigation of flow separation control over rotor blades using plasma actuator. AIAA Journal, 61(3):1151–1167.