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H I G H L I G H T S

• Impact of dielectric materials on plasma characteristics and body force in an SDBD plasma actuator.
• The rate of species generation in the plasma actuator is significantly influenced by the dielectric substance.
• Changing the dielectric material does not make a significant difference in electron temperature.
• Electron density changes in response to the change in the dielectric material.
• Ion density is affected by the dielectric material, with mica having the highest ion density and PTFE having the lowest.

A B S T R A C T

Plasma technology has undeniably revolutionized industrial processes in recent decades.
Atmospheric pressure plasma (APP) has emerged as a prominent and widely applicable
tool in various scientific disciplines. Notably, plasma-assisted flow control has become
a subject of intense interest, particularly applying surface dielectric barrier discharge
(SDBD) plasma actuators for aerodynamic flow control. In this study, a two-dimensional
model of the SDBD plasma actuator is developed using the COMSOL Multiphysics
program, incorporating air gas discharge reactions with N2/O2/Ar gases in specific
ratios (0.78, 0.21, 0.01). The investigation focuses on the impact of dielectric materials
(mica, silica glass, quartz, and polytetrafluoroethylene (PTFE)) on plasma character-
istics and body force within the plasma actuator under constant input parameters.
Moreover, the study explores how variable pressure (760, 660, and 560 torr) in different
applications influences plasma properties, ultimately affecting the magnitude of the
body force in the plasma actuator. These findings contribute to optimizing plasma
technology for flow control applications and enhance industrial efficiency and performance.
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1 Introduction

Since nonthermal plasma first attracted scientific and
technical attention 70 years ago, plasma technology has
taken center stage in industrial processes both now and in
the future. Over time, plasma technology developed and
is today employed in everything from everyday items to
cutting-edge applications (Keidar and Beilis, 2013). Vari-
ous scientific sectors have utilized APP because of its out-
standing quality (Mehrabifard et al., 2020; Venezia et al.,
2008; Da Ponte et al., 2011; Assadi et al., 2022; Mehrabi-
fard et al., 2017). Over the past few years, plasma-assisted

flow control has received much interest (Neretti et al.,
2014; Touchard, 2008). Significant interest is in utilizing
surface dielectric barrier discharge (SDBD) plasma actu-
ators to control aerodynamic flow. Plasma actuators find
utility in the realm of active airfoil leading edge separation
control (Neretti et al., 2014), used for high lift (Little et al.,
2010), boundary layer flow control (Porter et al., 2007;
Szulga et al., 2015), handling dynamic stall in an airfoil
(Post and Corke, 2006), bluff body flow control (Do et al.,
2007), regulation of airflow (Neretti et al., 2012), lowering
noise levels (Thomas et al., 2008), and postponing turbine
blade separation (Huang et al., 2006). Many studies have
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been conducted experimentally and numerically, focusing
on optimizing the ionic wind velocity and the volumet-
ric force generation mechanism (Likhanskii et al., 2008;
Jayaraman and Shyy, 2008; Mahdavi and Sohbatzadeh,
2019; Moreau, 2007). Moreau et al. reviewed the mechan-
ical and electrical characteristics and their applications
in aerodynamic flow control (Benard and Moreau, 2014).
Numerous earlier numerical research has utilized two or
more straightforward reactions to reduce the computa-
tions required (Abdollahzadeh et al., 2012; Boeuf et al.,
2007; Likhanskii et al., 2007). Additionally, the plasma
component may occasionally be viewed under an electro-
static condition (Abdelraouf et al., 2020; Kazemi et al.,
2021; Omidi and Mazaheri, 2020; Tehrani et al., 2022; Yu
et al., 2023). In some cases, a specific sort of gas has also
been applied to this structure (Mehrabifard, 2023).

This study describes a two-dimensional model of the
SDBD plasma actuator. The COMSOL Multiphysics pro-
gram is used in the development of the model. Air gas
discharge reactions with the combination of nitrogen, oxy-
gen, and argon gas with a ratio of 0.78, 0.21, and 0.01,
respectively, are considered for this simulation. With con-
stant input parameters, we investigate the effect of dielec-
tric material on the plasma characteristics and body force
in the plasma actuator. Besides that, the pressure can
be variable in many of the mentioned applications, which
can change many parameters of the plasma, which, as a
result, changes the magnitude of the body force in the
plasma actuator.

2 Model Description

2.1 Governing Equations

In this investigation, the fluid model was employed. The
electron density and energy can be calculated by resolving
the drift-diffusion formulas. To formulate the governing
equations of electric discharge, the drift-diffusion approx-
imation was adopted (Mehrabifard, 2023):

∂ne
t

+∇.~Γe = Re − (~u.∇)ne (1)

~Γe = −(~µe. ~E)ne − ~De.∇ne (2)

The electron continuity equation is defined by Eq. (1),
where ne is the electron density, De is diffusion coefficient,
Γe is electron flux, u is average species velocity, and Re is
electron generation rate. Equation (2) represents the elec-
tron flow, divided into drift and diffusion. The electron
energy density can be calculated using this equation:

∂nε
t

+∇.~Γε + ~E.~Γε = Rε − (~u.∇)nε

~Γε = −(~µε. ~E)nε − ~Dε.∇nε
(3)

The value of ~E.~Γε is the amount of energy that can be
extracted from an electron by applying an electric field.
The following equation may be used to compute the en-
ergy gained by non-elastic collisions, which is denoted by
the variable Rε:

Rε = Sen +
Q+Qgen

q
(4)

Sen is the power dissipation, Qgen is the heat source, and q
is the electron charge. De is electron diffusion coefficient,
µε indicates energy mobility, and Dε is energy distribution
coefficient. The link between these parameters is shown
in Eq. (5):

Dε = µεT

De = µεTe

µε =
5

3
µe

(5)

The Townsend coefficients of the electron source, which
are determined by the following equation, were used:

Re =
M∑

j=1

xjajNn|Γe| (6)

where M is the total number of reactions, xj the mo-
lar fraction of the target species for reaction j, aj is the
Townsend coefficient, and Nn is the total number of neu-
tral particles are present. Considering the number p of
non-elastic electron collisions, we will have:

Rε =

p∑

j=1

xjajNn|Γe|∆εj (7)

where ∆εj is the energy dissipation of the j reaction. For
non-electron-induced species, the below equation is used
for mass fraction calculation:

ρ
∂wk
t

+ ρ(~u.∇)wk = ∇.~jk +Rk (8)

in which wk is the ionic density and jk is the energy flux of
the ions. The following equation obtains the electrostatic
field:

∇.(ε0εrE) = ρ (9)

where ε0 is the permittivity of vacuum and εr is a relative
dielectric constant. The following relationships are found
regarding the boundary conditions for the electron flux
and energy flow:

− n̂.~Γe = (
1

2
υethne)−

∑

p

γp(~Γp.n̂) (10)

− n̂.~Γε = (
5

6
υethne)−

∑

p

εpγp(~Γp.n̂) (11)

The right-hand side of Eq. (10) displays the electron num-
ber caused by the secondary electron and γ represents the
secondary electron coefficient. Ions and excited species on
the surface of electrodes are neutralized via the surface re-
action. Surface interactions on the electrode are indicated
by the βj coefficient, which means the probability of the
function of the j species. The definition of flux matching
for each heavy species is as follows:

n.jk = MkRsurf,k+Mkckµm,kzk(n.E)[(zkn.E) > 0] (12)

in which jk and Rsurf,k indicate the diffusive flux vector
and the surface reaction rate expression for species k. Mk

is mass fraction and ck is particle mass density.
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Figure 1: Schematic of the plasma actuator, boundary condition, and input voltage with its function.

The body force generated by plasma is:

fcoulomb = ρν × normE (13)

In this equation, ρν is the density of electrons and posi-
tive/negative ions, normE is the normalized electric field
in the x − y direction. In this simulation, the value of
charge density is equal to:

ρν =(nAr+ + nN2+
+ nO2+

+ nN4+
+

nO+
+ nO4+

− ne − nO−)
(14)

Table 1: The reactions of electron impact with active species
of nitrogen. (Singly ionized nitrogen molecule N+

2 , metastable
nitrogen N2s, nitrogen molecule N2) (Mehrabifard, 2023; Hage-
laar, 2010; LXcat, 2023)

Reactions Formula Type ∆ε (eV)

1 e + N2 → e +N2 Elastic 0
2 e + N2 → e +N2s Excitation 0.02
3 e + N2 → e +N2s Excitation 0.29
4 e + N2 → e +N2s Excitation 0.291
5 e + N2 → e +N2s Excitation 0.59
6 e + N2 → e +N2s Excitation 0.88
7 e + N2 → e +N2s Excitation 1.17
8 e + N2 → e +N2s Excitation 1.47
9 e + N2 → e +N2s Excitation 1.76
10 e + N2 → e +N2s Excitation 2.06
11 e + N2 → e +N2s Excitation 2.35
12 e + N2 → e +N2s Excitation 6.17
13 e + N2 → e +N2s Excitation 7
14 e + N2 → e +N2s Excitation 7.35
15 e + N2 → e +N2s Excitation 7.36
16 e + N2 → e +N2s Excitation 7.8
17 e + N2 → e +N2s Excitation 8.4
18 e + N2 → e +N2s Excitation 8.16
19 e + N2 → e +N2s Excitation 8.55
20 e + N2 → e +N2s Excitation 8.89
21 e + N2 → e +N2s Excitation 11.03
22 e + N2 → e +N2s Excitation 11.88
23 e + N2 → e +N2s Excitation 12.25
24 e + N2 → e +N2s Excitation 13
25 e + N2 → 2 e +N+

2 Ionization 15.6

Table 2: The interactions between oxygen and electrons
(Hagelaar, 2010; LXcat, 2023)

Reactions Formula Type ∆ε (eV)

1 e + O2 → e +O2 Elastic -
2 e + O2 → O +O−s Attachment -
3 e + O2 → e +O2 Excitation 0.02
4 e + O2 → e +O2 Excitation 0.19
5 e + O2 → e +O2 Excitation 0.19
6 e + O2 → e +O2 Excitation 0.38
7 e + O2 → e +O2 Excitation 0.38
8 e + O2 → e +O2 Excitation 0.57
9 e + O2 → e +O2 Excitation 0.75
10 e + O2 → e +O2 a1d Excitation 0.977
11 e + O2a1d → e +O2 Excitation -0.977
12 e + O2 → e +O2b1s Excitation 1.627
13 e + O2b1s → e +O2 Excitation -1.627
14 e + O2 → e +O245 Excitation 4.5
15 e + O245 → e +O2 Excitation -4.5
16 e + O2 → e +O + O Dissociation 6
17 e + O2 → e +O + O1d Excitation 8.4
18 e + O2 → e +O1s Excitation 9.95
19 e + O2 → 2e +O+

2 Ionization 12.06

2.2 Boundary Conditions and Reactions

An asymmetric pair of copper electrodes separated by a
dielectric substance from the actuator. While the other
electrode is connected to the ground and encased by the
dielectric material, the first electrode is placed on the di-
electric surface and in contact with the gas flow at atmo-
spheric pressure. A Gaussian voltage power supply drives
the discharge at 1.5 kV. The electron density is first es-
timated to be 108 m−3. The gas is at a temperature of
293.15 K and a pressure of 760 torr. In the simulation,
the material components are defined as a model of the
air, considering the related reactions of the species. Rate
coefficients were obtained by solving Boltzmann’s equa-
tion with BOLSIG+ (Hagelaar and Pitchford, 2005) and
the cross-sections from the LXCAT data source (Pitchford
et al., 2017). Reaction rates were taken from the refer-
ences (Sakiyama et al., 2012). The dominant reactions
can be seen in Tables 1 to 6, including electron impact
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Figure 2: Meshing and its density in edges.

Table 3: Atomic and molecule-to-molecule interactions with two and three bodies (Stafford and Kushner, 2004; Sohbatzadeh
and Soltani, 2018).

Reactions Formula Type Kf (m3.s−1.mol−1)

1 e + N+ → N Recombination 3.5× 10−18

2 e + N2 → 2e +N +N+s Dissociative ionization 2.4× 10−23

3 e + N2 → e + 2N Dissociative 2× 10−17

4 e + N+
2 → 2N - 2.8× 10−13

5 N+ + N2 → N +N+
2 Charge exchange 10−17

Table 4: Atomic and molecule-to-molecule interactions with two and three bodies (Stafford and Kushner, 2004; Sohbatzadeh
and Soltani, 2018).

Reactions Formula Kf (m3.s−1.mol−1)

1 O + O2 + O2 → O3 + O2 6× 10−46 × (1.3−2.8)
2 O + O2 + N2 → O3 + N2 5.6× 10−46 × (1.3−2.8)
3 O + O3 → O2 + O2 8× 10−18 × exp(−2060/4)
4 O + NO2 → NO + O2 5.6× 10−7 × exp(180/40)
5 O + N O3 → O2 + NO2 1.7× 10−17

6 O + N2O5 → NO2 + NO2 + O2 1× 10−22

7 N + O2 → NO + O 1.5× 10−7 × exp(8)
8 N + O3 → NO + O2 1× 10−22

9 N + NO → N2 + O 2.1× 10−11 × exp(0.25)
10 NO + O3 → NO2 + O2 3× 10−18 × exp(−3.8)
11 N + NO2 → N2O + O 5.8× 10−18 × exp(0.55)
12 NO2 + O3 → NO3 + O2 1.4× 10−19 × exp(−6.2)
13 O2b1s + O2 → O3 + O 4.8× 10−21

14 N2 + O2 → N2O + O 6× 10−20 × (1.30.55)
15 O− + O → O2 + e 2× 10−16 × (4000.5)
16 O− + O2 → O3 + e 3× 10−16 × (4000.5)
17 O− + O2 → O +O2 + e 6.9× 10−16 ××(4000.5)
18 O2 + O2 → O3 + O 2.95× 10−27 ××(4000.5)
19 O− + O3 → O2 + O2 + e 3× 10−16 ××(4000.5)
20 O− + O3 → O−

2 + O2 1.02× 10−17 ××(4000.5)
21 O−

2 + O → O3 + e 1.5× 10−16 ××(4000.5)
22 O + O3 → O2 + O + O 1.2× 10−16

23 O2 → O2 0.2
24 O2 → O 10−5

25 N+ + O2 → N + O+
2 3× 10−16

ionization, electron attachment, elastic collisions, excita-
tion, recombination, neutral component collisions, and ion
conversion processes. The schematic structure of SDBD
and its boundary conditions is shown in Fig. 1. Cop-
per electrode dimensions are 0.05 mm ×5 mm, and the
dielectric dimensions are 0.5 mm ×10 mm. We employ
five boundary layers and a 1.4 stretching factor for the
system’s whole boundary while meshing this structure. A

free triangular mesh with a maximum element size of 0.4
is employed for the entire geometry (Fig. 2).

Nitrogen, oxygen, and argon reactions with a mass
fraction of 0.78, 0.21, and 0.01 are used to simulate air
gas discharge. The electron impact reactions with active
nitrogen species, such as nitrogen molecules N2 and N+

2 ,
that are singly ionized are shown in Table 1. The interac-
tions of electron impact with active oxygen species, such
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Table 5: Atomic and molecule-to-molecule interactions with two and three bodies (Sohbatzadeh and Soltani, 2018).

Reactions Formula Kf (m3.s−1.mol−1)

1 N2 + Ar + N+
2 → Ar +N+

4 1.8× 106

2 e+ N+
4 → N2 + N2 1.2× 1011

3 O2 +Ar + O+
2 → Ar + O+

a 2× 105

4 O+
4 + Ar+ O− → 2O2 + Ar + O 5.2× 1011

5 Ar + O+
4 → Ar +O +O2 +e + O+ 6× 107

6 O− + Ar + O+
4 → 2O2 + O + Ar 3.8× 108

7 N2 + Ar + N+
2 → Ar + N+

4 1.8× 106

Table 6: The interactions between electrons and Argon (Hagelaar, 2010; LXcat, 2023).

Reactions Formula Type ∆ε (eV)

1 e + Ar → e + Ar Elastic 0
2 e + Ar → e + Ars Excitation 11.5
3 e + Ars → e + Ar Superelastic -11.5
4 e + Ar → 2e + Ar+ Ionization 15.8
5 e + Ars → 2e + Ar+ Ionization 4.24
6 Ars + Ars → e + Ar + Ar+ Penning ionization -
7 Ars + Ar → eAr + Ar Metastable quenching -

as metastable oxygen O2s, oxygen molecule O2, and singly
ionized oxygen molecule O+

2 , are shown in Table 2. Ta-
bles 3, 4, and 5 offer the two and three-body reaction rates
between atoms and molecules. Table 6 shows all electron
impact reactions with argon and its molecule-to-molecule
reactions. Fifteen surface reactions are considered in addi-
tion to the aforementioned reactions, as indicated in Table
7.

3 Results and discussion

An SDBD plasma actuator’s body force magnitude has
been obtained from the simulations. The rate of species
generation is significantly influenced by the dielectric sub-
stance. Dielectric materials are electrically insulating sub-
stances with low electrical conductivity. Numerous pro-
cesses that alter the behavior of the plasma and the emer-
gence of species may take place when it comes into contact
with a dielectric substance (Fridman and Kennedy, 2016;
Lieberman and Lichtenberg, 1994).

Table 7: Table of surface reactions in air discharge (So-
hbatzadeh and Soltani, 2018).

Reactions Formula TSticking Coefficient

1 O2a1d → O2 1
2 O245 → O2 1
3 O2bls → O2 1
4 O2 → O2 1
5 O+

2 → O2 1
6 O+ → O 1
7 O− → O 1
8 O1s → O 1
9 O1d → O 1
10 N+ → N 1
11 Ars → Ar 1
12 Ar+ → Ar 1
13 N2s → N2 1
14 N+

2 → N2 1

In this study, we investigated how four different dielec-
tric materials affected plasma properties that change the
magnitude of body force in the plasma actuator. Fig-
ure 3 displays the electrical potential when plasma is
formed. The grounded electrode has zero potential, while
the power electrode has a voltage of 1.5 kV with a Gaus-
sian shape.

Electron density and temperature play a vital role in
plasma and are the initiators of many plasma reactions.
And in many applications, the effect of electron density
has been investigated (Mehrabifard et al., 2023; Tanaka
et al., 2015), and it is an effective factor for the plasma
actuators. The evaluation of electron temperature at 6 ns
for various dielectric materials is shown in Fig. 4. Moving
away from the power electrode causes the electron tem-
perature to decrease from its highest value. As the figure
shows, the temperature changes for each dielectric mate-
rial were almost in the same range. Changing materials
does not make a significant difference in electron temper-
ature. The temperature of the electron is directly influ-
enced by the electric field due to the implementation of a
constant potential function, resulting in minimal fluctua-
tions in temperature.

Then, once more, Eqs. (12) and (13) say this: the mag-
nitude of the body force is directly influenced by the par-
ticle density. When all other factors remain the same, Fig.
5 illustrates how much the electron density changes with
respect to the dielectric material. Using mica as dielec-
tric results in electrons in its maximum value; quartz and
silica have almost the same amount, 8.61× 1014 m−3 and
8.22 × 1014 m−3, respectively, and PTFE has the lowest
value of 2.39× 1014 m−3. Changes in electron density are
influenced by many causes, including surface charge ac-
cumulation and the photoionization effect. Among these
factors, the alteration of the dielectric coefficient is par-
ticularly significant in determining the changes in surface
charge accumulation. Indeed, the density rises in propor-
tion to the increase in the dielectric coefficient.
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Figure 3: Distribution of electric potential for Vin = 1.5 kV.

Figure 4: The electron temperature over 6 ns at 1.5 kV with Gaussian function for different dielectric materials (A) Quartz, (B)
Silica Glass, (C) PTFE, (D) Mica.

Figure 5: The electron densities over 6 ns at 1.5kV with Gaussian shape for different dielectric materials (A) Quartz, (B) Silica
Glass, (C) PTFE, (D) Mica.

The ion densities are shown in Fig. 6. The nAr+ , nN+
2

, nO+
2

, nN+
4

, nO+
, nO4+

, and nO− are the main species mea-
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Figure 6: Two-dimensional distribution of the ion densities for different dielectric materials.

Figure 7: Magnitude of body force in the presence of different dielectric barrier discharge.

sured in this simulation in the presence of different dielec-
tric materials. As Fig. 6 shows, all ion densities have a
higher value in the presence of mica and the lowest for
PTFE. And the value for quartz and silica glass shows
almost the same ion density. As stated for the electron.

The increase in surface charge accumulation will affect the
density of ions, which is related to the dielectric coefficient.

The body force can be calculated from the difference
between positive and negative charges and the magnitude
of the normal field in the discharge space. According to

57



S. Hajikhani et al. Radiation Physics and Engineering 2024; 5(2):51–60

Figure 8: The body force is created on the surface of the electrode and the dielectric.

Figure 9: The effect of different pressures on body force.

Eq. (13), the logarithmic body force distribution for di-
electric materials is shown in Fig. 7. To investigate more
precisely, a hypothetical line on the surface of the electrode
and dielectric is considered. This line’s beginning and end
points are (x = 4, y = 0.54) and (x = 8, y = 0.54). Figure
8 shows a non-logarithmic magnitude of the body force on
this virtual line. As it is known, the force of the body is the
highest for Mica, and its magnitude will be equal to 9800
N.m−3. It will be equal to 5700 N.m−3, 5600 N.m−3, and
1100 N.m−3 for quartz, silica, and PTFE, respectively.

Gas pressure is one of the main parameters that can
change the characteristics of the plasma; as a result, this
causes a change in the magnitude of the body force in
the plasma actuators. The pressure of 560, 660, and 760
torr are considered for plasma simulation. Figure 9 shows
changes in body force magnitude for different pressures.
The body force is measured on a virtual line on the upper
part of the power electrode. As shown in the figure, the
magnitude of body force changes dramatically by reducing
pressure. The pressure was reduced by 100 torr in each

stage, but significant changes were shown in body force.

Changing the dielectric coefficient, the electron energy
distribution function changes around the power electrode,
and this change leads to different ionization collisions
around this electrode, which ultimately creates a differ-
ence in the ionization coefficient and volumetric force. As
the ambient pressure changes, the ratio of the electric field
to the ambient pressure will change, considering that the
drift velocity is a function of the electric field-to-pressure
ratio (E/P ). On the other hand, this velocity is directly
related to electron mobility; it can affect the changes in
electron mobility. In fact, the set of these net charge den-
sity changes that lead to the production of propulsion force
will be different.

4 Conclusions

Active current control is one of the areas where plasma
is used. Additionally, modeling these systems before con-
struction may save time and money and ensure the cre-
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ation of an efficient system. From the outcome of our in-
vestigation, it is possible to conclude that without chang-
ing the main parameters and only by changing the type of
dielectric material, the magnitude of the body force can be
increased. Among the selected materials, using mica, we
have the most body force. Furthermore, it is worth noting
that pressure, being a crucial factor in plasma production,
has shown that even the slightest alteration may lead to
substantial variations in the body’s force. Moreover, due
to the significant change in body force, pressure is one of
the parameters that should be considered in the actuator
design. The simulation findings, performed with consid-
eration of air gas discharge, can be valuable in the design
of plasma drive systems for many applications, enabling
the attainment of optimum outcomes via the selection of
appropriate materials.
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