A peer-reviewed journal published by K. N. Toosi University of Technology

Document Type : Research Article


1 Physics Department‎, ‎Imam Khomeini International University‎, ‎Iran

2 Radiation Applications Research School‎, ‎Nuclear Science and Technology Research Institute‎, ‎14155-1339‎, ‎Tehran‎, ‎Iran


‎Fricke gel dosimeters obtained by modifications on standard Fricke dosimeter presents some advantages like easy preparation‎, ‎tissue equivalence‎, ‎good reproducibility and dose mapping‎. ‎In this work‎, ‎dose response characteristics of Gelatin Fricke gel dosimeters was investigated and compared with Fricke agarose gel dosimeters in terms of sesitivity‎. ‎After prepration of three different formulation of Gelatin Fricke gel dosimeters and gamma irradiation of the samples‎, ‎a spectrophotometer was applied to measure the optical absorbance of the samples‎. ‎Results indicate a linear dose range response of 10 to 30 Gy‎, ‎as well as increased gelatin concentrations cause the sensitivity of the dosimeter to detereorate with a 80% reduction of dose response for a change in gelatin concentration from 3 to 8 weight percent‎. ‎Obtained coefficient variation verifies the good repeatability of the gel response‎. ‎The gel dosimeter has no dose rate dependence‎. ‎Comparison of the most sensitive Gelatin Fricke gel sample with the prepared Fricke agarose gel samples confirm that Fricke agarose dosimeter is more sensitive than Gelatin Fricke gel dosimeter‎.


  • Optical absorbance study of Fricke gelatin gel dosimeters was performed.
  • 80% reduction of dose response for a change in gelatin concentration from 3% to 8% by weight.
  • Good repeatability and no dose rate dependence of the gel response.
  • Fricke agarose gel dosimeter is more sensitive than Fricke gelatin gel dosimeter.


Audet, C. and Schreiner, L. (1997). Multiple-site fast exchange model for spin-lattice relaxation in the Fricke-gelatin dosimeter. Medical Physics, 24(2):201–209.
Bero, M., Gilboy, W., Glover, P., et al. (2000). Tissue-equivalent gel for non-invasive spatial radiation dose measurements. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 166:820–825.
Cavinato, C. C. and Campos, L. L. (2010). Study of Fricke gel dosimeter response for different gel quality. In Journal of Physics: Conference Series, volume 249, page 012064. IOP Publishing.
Davies, J. and Baldock, C. (2008). Sensitivity and stability of the Fricke-gelatin-xylenol orange gel dosimeter. Radiation Physics and Chemistry, 77(6):690–696.
de Oliveira, L. N., de Almeida, A., and Caldas, L. V. (2014). Fricke gel diffusion coefficient measurements for applications in radiotherapy level dosimetry. Radiation Physics and Chemistry, 98:42–45.
El Gohary, M., Shabban, Y., Amin, E., et al. (2015). Preparation and Characterization of Frick gel dosimeter.
Galante, A., Campos, L. L., et al. (2007). Investigations of the fricke gel (FXG) dosimeter developed at IPEN irradiated with sup Co-60 gamma rays.
Gallo, S., Pasquale, S., Lenardi, C., et al. (2021). Effect of ionizing radiation on the colorimetric properties of PVA-GTA Xylenol Orange Fricke gel dosimeters. Dyes and Pigments, 187:109141.
Gambarini, G., Veronese, I., Bettinelli, L., et al. (2017). Study of optical absorbance and MR relaxation of Fricke xylenol orange gel dosimeters. Radiation Measurements, 106:622–627.
Hazle, J., Hefner, L., Nyerick, C., et al. (1991). Dose-response characteristics of a ferrous-sulphate-doped gelatin system for determining radiation absorbed dose distributions by magnetic resonance imaging (Fe MRI). Physics in Medicine & Biology, 36(8):1117.
Healy, B., Brindha, S., Zahmatkesh, M., et al. (2004). Characterization of the ferrous xylenol orange-gelatin (FXG) gel dosimeter. In Journal of Physics: Conference Series, volume 3, page 142. IOP Publishing.
Marrale, M., Brai, M., Longo, A., et al. (2014). Nmr relaxometry measurements of Fricke gel dosimeters exposed to neutrons. Radiation Physics and Chemistry, 104:424–428.
Olsson, L. E., Petersson, S., Ahlgren, L., et al. (1989). Ferrous sulphate gels for determination of absorbed dose distributions using MRI technique: basic studies. Physics in Medicine & Biology, 34(1):43.
Pérez, P., Torres, P. R., Bruna, A., et al. (2021). Fricke gel xylenol orange dosimeter layers for stereotactic radiosurgery: A preliminary approach. Applied Radiation and Isotopes, 178:109936.
Rae, W. I., Willemse, C. A., Lötter, M. G., et al. (1996). Chelator effect on ion diffusion in ferrous-sulfate-doped gelatin gel dosimeters as analyzed by MRI. Medical Physics, 23(1):15–23.
Scotti, M., Arosio, P., Brambilla, E., et al. (2022). How xylenol orange and ferrous ammonium sulphate influence the dosimetric properties of PVA-GTA fricke gel dosimeters: a spectrophotometric study. Gels, 8(4):204.
Vedelago, J., Quiroga, A., Trivi˜ no, S., et al. (2019). Parameter estimation and mathematical modeling of the diffusion process of a benzoic acid infused Fricke gel dosimeter. Applied Radiation and Isotopes, 151:89–95.