Alimohammadi, M. and Hassanabadi, H. (2017). Investigation of the spectroscopy properties of deformed nuclei by combining the X(3) and E(5) models. The European Physical Journal A, 53(6):129.
Bijker, R., Casten, R., Zamfir, N., et al. (2003). Test of X(5) for the Degree of Freedom. Physical Review C, 68(6):064304.
Bonatsos, D., Lenis, D., Minkov, N., et al. (2004a). Ground state bands of the E(5) and X(5) critical symmetries obtained from Davidson potentials through a variational procedure. Physics Letters B, 584(1-2):40–47.
Bonatsos, D., Lenis, D., Petrellis, D., et al. (2004b). Z(5): critical point symmetry for the prolate to oblate nuclear shape phase transition. Physics Letters B, 588(3-4):172–179.
Bonatsos, D., Lenis, D., Petrellis, D., et al. (2006). X(3): an exactly separable γ-rigid version of the X(5) critical point symmetry. Physics Letters B, 632(2-3):238–242.
Bonatsos, D., Lenis, D., Petrellis, D., et al. (2007a). Critical point symmetries in nuclei. Bulg. J. Phys, 34:227–239.
Bonatsos, D., McCutchan, E., Minkov, N., Casten, R., Yotov, P., Lenis, D., Petrellis, D., and Yigitoglu, I. (2007b). Exactly separable version of the Bohr Hamiltonian with the Davidson potential. Physical Review C, 76(6):064312.
Budaca, R. (2014a). Harmonic oscillator potential with a sextic anharmonicity in the prolate -rigid collective geometrical model. Physics Letters B, 739:56–61.
Budaca, R. (2014b). Quartic oscillator potential in the γ-rigid regime of the collective geometrical model. The European Physical Journal A, 50(5):87.
Budaca, R. and Budaca, A. (2015a). Competing γ-rigid and γ-stable vibrations in neutron-rich Gd and Dy isotopes. The European Physical Journal A, 51(10):126.
Budaca, R. and Budaca, A. (2015b). Conjunction of γ-rigid and γ-stable collective motions in the critical point of the phase transition from spherical to deformed nuclear shapes. Journal of Physics G: Nuclear and Particle Physics, 42(8):085103.
Budaca, R. and Budaca, A. (2016). Emergence of Euclidean dynamical symmetry as a consequence of shape phase mixing. Physics Letters B, 759:349–353.
Chabab, M., El Batoul, A., Hamzavi, M., et al. (2017). Excited collective states of nuclei within Bohr Hamiltonian with Tietz-Hua potential. The European Physical Journal A, 53(7):157.
Chabab, M., El Batoul, A., Lahbas, A., and Oulne, M. (2016). Electric quadrupole transitions of the Bohr Hamiltonian with Manning–Rosen potential. Nuclear Physics A, 953:158–175.
Chabab, M., Lahbas, A., and Oulne, M. (2015a). Bohr Hamiltonian with Hulth´en plus ring-shaped potential for triaxial nuclei. The European Physical Journal A, 51(10):131.
Chabab, M., Lahbas, A., and Oulne, M. (2015b). Closed analytical solutions of Bohr Hamiltonian with Manning-Rosen potential model. International Journal of Modern Physics E, 24(11):1550089.
Edmonds, A. R. (1996). Angular momentum in quantum mechanics. Princeton university press.
Eshghi, M. and Hamzavi, M. (2012). Spin symmetry in Diracattractive radial problem and tensor potential. Communications in Theoretical Physics, 57(3):355.
Fortunato, L. (2004). Soft triaxial rotovibrational motion in the vicinity of γ=π/ 6. Physical Review C, 70(1):011302.
Greiner, W. and Maruhn, J. A. (1996). Nuclear models. Springer.
Hassanabadi, H. and Alimohammadi, M. (2018). Investigation of the Morse potential for the hybrid model and the one combining the E(5) and X(3) symmetries. International Journal of Modern Physics E, 27(06):1850053.
Hulth´en, L. (1942a). Uber die Eigenl¨osungen der Schr¨odinger chung des Deutrons. Arkiv f¨or Matematik, Astronomi och Fysik, 28(5).
Hulth´en, L. (1942b). ¨ Uber die Eigenl¨osungen der Schr¨odinger-Gleichung des Deuterons. Almqvist & Wiksell.
Iachello, F. (2000). Dynamic symmetries at the critical point. Physical Review Letters, 85(17):3580.
Iachello, F. (2001a). Analytic description of critical point nuclei in a spherical-axially deformed shape phase transition. Physical Review Letters, 87(5):052502.
Iachello, F. (2001b). Analytic description of critical point nuclei in a spherical-axially deformed shape phase transition. Physical Review Letters, 87(5):052502.
Ikhdair, S. M. (2009). Rotational and vibrational diatomic molecule in the Klein–Gordon equation with hyperbolic scalar and vector potentials. International Journal of Modern Physics C, 20(10):1563–1582.
Nikiforov, A. F. and Uvarov, V. B. (1988). Special functions of Mathematical Physics, volume 205. Springer. Soheibi, N., Hamzavi, M., Eshghi, M., et al. (2017). Calculations of the decay transitions of the modified P¨oschl–Teller potential model via Bohr Hamiltonian technique. International Journal of Modern Physics E, 26(11):1750073.