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H I G H L I G H T S

• The continuous energy states have been obtained for the radial part of the Dirac equation.

• The relativistic scattering amplitude have calculated for spin
1

2
particles.

• The Pöschl-Teller double ring-shaped Coulomb potential have been used for solution of the relativistic equation.

A B S T R A C T

In this research, we obtain the exact solution to the Dirac equation with the Pöschl-Teller
double ring-shaped Coulomb (PTDRSC) potential for any spin-orbit quantum number κ.

The relativistic scattering amplitude for spin
1

2
particles in the field of this potential has

been studied. The wave functions are being expressed in terms of the hyper-geometric

series of the continuous states on the
k

2π
scale. In addition, a formula for the phase shifts

has also been found.
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1 Introduction

The solution to relativistic equations plays an essential
role in many aspects of modern physics. In particular,
the Dirac equation is the most frequently used wave equa-
tion in the description of particle dynamics in relativistic
quantum mechanics and in many fields of physics such as
nuclear and high-energy physics as well as chemistry. In
recent years, there has been an increase trend in searching
for analytic solution to the Dirac equation; For example,
see (Jia et al., 2009; Aydoğdu and Sever, 2010; Zhang and
Huang-Fu, 2012; Eshghi and Ikhdair, 2014b,c; Moghadam
et al., 2013; Eshghi and Mehraban, 2012a; Xue-Ao et al.,
2005; Cheng and Dai, 2007; Eshghi and Mehraban, 2012b;
Eshghi and Hamzavi, 2012; Eshghi et al., 2017; Zarrinka-
mar et al., 2010).

On the other hand, scattering theory is worried with

the external dynamics of unbounded particles flowing from
and to unlimited, and having continuous energy spectra
(Taylor, 2006; Joachain, 1975). Conversely, the interior
dynamics involves the bound states, which form discrete
energy spectra and generate quasiperiodic time evolve-
ments. In this regard, there is a large variety of scatter-
ing systems in areas such as for example particle, nuclear,
atomic, molecular, chemical, and mesoscopic physics, pho-
tonics, phononics, surface science, gas kinetics, geophysics,
astrophysics, etc. In fact, scattering systems are charac-
terized by infinity movement before and after collision be-
tween particles or with a barrier.

By permitting the formulation of quantum mechanics
in systems of infinite spatial expansion, scattering theory
paves the best way to the explanation of transport prop-
erties for open systems in contact with particle and heat
reservoirs (Nazarov and Blanter, 2009; Ferry and Good-
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nick, 1999; Datta, 1995; Imry, 1997). If the reservoirs have
various temperatures and chemical potentials, such open
systems are out of equilibrium and they generate thermo-
dynamic entropy. Since Landauers pioneering work (Lan-
dauer, 1957), advances have demonstrated how the trans-
port and thermodynamic properties may be precisely for-
mulated on the foundation of scattering theory (Büttiker
et al., 1985; Levitov et al., 1996; Blanter and Büttiker,
2000; Tasaki, 2001; Tasaki and Takahashi, 2006; Bruneau
et al., 2013; Sâad and Pillet, 2014; Gaspard, 2015b,a).

Therefore, the scattering problems, in the presence of
an external potential field, have become highly interest-
ing topics in relativistic and non-relativistic quantum me-
chanics. Its well known that the scattering of a relativistic
particle in the field of a potential can be treated exactly
by finding the continuum solutions of the Dirac equation.

Also, there has been continuous growing interest in
studying the scattering states solution within the frame-
work of non-relativistic and relativistic quantum mechan-
ics for central and non-central potentials alike (Yazarloo
et al., 2015; Edet et al., 2021; Arda, 2017; Arda et al.,
2010; Eshghi and Abdi, 2013; Dong and Lozada-Cassou,
2004; Chang-Yuan et al., 2013; Ochiai and Nakazato, 2018;
Wang et al., 2020; Sakhnovich, 2019; Tesfahun, 2020; Mo-
tohashi and Noda, 2021).

In the present work, we intend to solve the Dirac
equation with the PTDRSC potential (Fa-Lin and Chang-
Yuan, 2010) for its scattering states. The physical form of
this potential (Fa-Lin and Chang-Yuan, 2010) is given in
spherical coordinates as

V (r, θ, φ) =− δ

r
+

1

r2

[ B

sin2θ
+
A(A− 1)

cos2θ

]

+
1

r2sin2θ

[α2D(D − 1)

sin2αφ
+
α2C(C − 1)

cos2αφ

] (1)

where A,C,D > 1, δ > 0, B > 0, and α = 1, 2, 3, ... are
real positive parameters. However, some authors such as
Sun et al, You et al, and Chen et al have used the double
ring-shaped potential for solution of the Schrödinger equa-
tion by using the various techniques (Sun et al., 2015a,b;
You et al., 2018; Chen et al., 2016). But, Maghsoodi et al.
(Maghsoodi et al., 2013) have solved the Dirac equation
for the above potential with the Nkiforov-Uvarov (NU)
method. Here, we attempt to study the scattering states
of the Dirac equation for the above potential and will dis-
cuss some of its analytical properties. This article is orga-
nized as follows: In Section 2, we intend to solve the Dirac
equation with the PTDRSC potential for any spin-orbit
quantum number. In Section 3, we obtain the continu-
ous energy states along with the wave functions for the
radial parts of the Dirac equation. Finally, we end with
our discussion and conclusions in Section 4.

2 The Dirac Equation

We begin by presenting the Dirac Hamiltonian (in natural
units } = c = 1) is (Lisboa et al., 2004; Akcay, 2009):

H = ~α.~p+ β
(
M + S(~r)

)
+ V (~r) (2)

[
~α.~p+ β

(
M + S(~r)

)
+ V (~r)

]
Ψ(~r)) = EΨ(~r) (3)

where E denotes the energy. In Pauli-Dirac represen-
tation, because of the appearance of 4 × 4 matrices in
the Dirac equation, the wave function must be a four-
component vector. It is necessary to classify the upper
two and lower two components of the Dirac wave function
as two-component spinors (Dyall and Fægri Jr, 2007). We
write

Ψ(~r) =

(
ϕL(r)
χS(r)

)
≡
(
ϕ(r)
χ(r)

)
(4)

where ϕL(r) and χS(r) are termed the large and small
components of the wave function, we get

~σ.~p χ(~r) =
[
E − V (~r)−M − S(~r)

]
ϕ(~r) (5)

~σ.~pϕ(~r) =
[
E − V (~r) +M + S(~r)

]
χ(~r). (6)

In the case when scalar potential is equal to the vector
potential, the above equations turn out to become

~σ.~p χ(~r) =
[
E −M − 2V (~r)

]
ϕ(~r) (7)

χ(~r) =
~σ.~p

E +M
ϕ(~r) (8)

Further, after substituting Eq. (8) into Eq. (7), we
can obtain a Schrödinger-like equation for the upper com-
ponent:

[
p2 + 2(E +M)V (~r)

]
ϕ(~r) =

[
E2 −M2

]
ϕ(~r) (9)

and afterward plugging the potential (1) into Eq. (9), we
can obtain
[
−∇2 + 2(E +M)

×




−δ
r

+
1

r2

[ B

sin2θ
+
A(A− 1)

cos2θ

]

1

r2sin2θ

[α2D(D − 1)

sin2αφ
+
α2C(C − 1)

cos2αφ

]




]
ϕ(r, θ, φ)

=
[
E2 −M2

]
ϕ(r, θ, φ)

(10)
In order to make separation of variables in a spherical

coordinates for the desired spherical potential, we resort
to substitute the following ansatz of the wave function

ϕnlm(r, θ, φ) =
gnlm(r)

r

Hl(θ)

(sinθ)1/2
Φm(φ) (11)

into Eq. (10) which leads to the three set of second-order
differential equations:

d2g(r)

dr2
+

{(2(M + E)δ

r
+

1
4 − `2
r2

)

−M2 + E2

}
g(r) = 0

(12)

d2H(θ)

dθ2
+

{( 1
4 − 2(M + E)−m2

sin2θ

− 2(M + E)A(A− 1)

cos2θ

)
+ `2

}
H(θ) = 0

(13)
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d2Φ(φ)

dφ2
+

{(−2(M + E)α2D(D − 1)

sin2αφ

− 2(M + E)α2C(C − 1)

cos2αφ

)
+m2

}
Φ(φ) = 0

(14)

where ` = 0, 1, 2, . . . and m = 0,±1,±2, . . . are separation
constants.

2.1 Polar and azimuthal solutions

For this case, by choosing

−
1
4 − 2(E +M)−m2

ζ2
= χ(χ− 1)

− 2(E +M)A(A− 1)

ζ2
= λ(λ− 1)

`2 = 2E + ζ2

(15)

we can write Eq. (13) as

−1

2

d2H(q)

dq2
+
ζ2

2

{
χ(χ− 1)

sin2(ζq)
+
λ(λ− 1)

cos2(ζq)

−
(
E +

1

2
ζ2
)}

H(q) = 0

(16)

Equation (47) is obviously a standard one-dimensional
form of the Schrödinger equation with a generalized Pöchl-
Teller effective potential which admits an exact solution
of the form

Enr =
ζ2

2
(χ+ λ+ 2nr)

2 (17)

H(q) =C sinχ(ζq) cosλ(ζq)

×2 F1(−nr, χ+ λ+ nr, χ+
1

2
; sin2(ζq))

(18)

with χ, λ > 1, H(0) = 0, and H( π2ζ ) = 0, as reported by

Salem and Montemayor, Eq. (4.7) in (Salem and Mon-
temayor, 1993). However, for χ = 0, 1 effective potential
(16) collapses into

Veff(q(r)) =
ζ2

2

λ(λ− 1)

cos2(ζq)
(19)

which admits an exact solution

Enr
= 2 ζ2

(λ
2

+ nr
)2 − ζ2

2

H(q) = A cosλ(ζq)

×2 F1

(
− nr, λ+ nr,

1

2
; sin2(ζq)

)
(20)

We can also obtain exact solution of the Eq. (13) by
using the NU method (Nikiforov and Uvarov, 1988). The
analytical exact solution of Eq. (13) has been given by
(Maghsoodi et al., 2013) by NU method. To obtain a
solution of Eq. (14) and to avoid repetition in our solu-
tion, If we substitute −2(E +M)α2D(D− 1) = χ(χ− 1),

−2(E+M)α2C(C−1) = λ(λ−1), and m2 = E+
1

2
ζ2, then

Eq. (14) turns to Eq. (16). Using the similar procedure
like the ones in above the present subsection, eigenvalues
and eigenfunctions of the Eq. (14) can be easily obtained.
The analytical exact solution of Eq. (14) has also been
given in Ref. (Maghsoodi et al., 2013) by NU method.

2.2 Solution of the radial Dirac equation

To solution of Eq. (12), we can simply use the Laplace
transform (Spiegel, 1965) that the analytical exact solu-
tion of Eq. (12) has also been given in Ref. (Eshghi and
Ikhdair, 2014a) by this method. We use the answers ob-
tained as Eq. (24) into Ref. (Eshghi and Ikhdair, 2014a),
and write the answer of the radial part as follows:

− (E +M)δ√
E2 −M2

−
√

1

2
− `2 +

1

2
= n (21)

where n = 0, 1, 2, . . . is principle quantum numbers, re-
spectively. Given that in many-body systems such as nu-
clear and stellar materials or electronic systems, the study
of scattering states and thermodynamic discussions is one
of the most basic tasks (Typel, 2013; Berakdar, 2001).

Here, we can apply this idea of studying thermody-
namic properties for the radial limit state (non-relativistic
state), and consider our system as a canonical ensemble
and calculate the partition function. Due to overlapping
topics, we are postponing this part of the calculation for
future works.

3 Scattering States of the Radial Dirac
Equation

If the energy is positive, then k =
√
E2
nκ −M2 is called

the wave number associated to the electron whenever it
moves asymptotically for the origin, the center of the force
field. Eq. (12) can be written as

d2g(r)

dr2
+

[
k2 +

2(M + Enκ)δ

r

− (`− 1
2 )(`+ 1

2 )

r2

]
g(r) = 0

(22)

The boundary conditions for Eq. (22) on the boundaries
g(0) = 0 and g(∞) are to be finite values. Owing to the
asymptotic behavior of the radial wave functions of the
continuous states as r → ∞ , we need to take the wave
functions in the form

g(r) = A(kr)`+1/2exp(ikr)f(r) (23)

On substituting the wave function (23) into Eq. (22),
we have

d2f

dr2
+ (2`+ 1 + 2ikr)

df

dr

+
[
2ik(`+

1

2
) + 2(M + Enκ)δ

]
f = 0

(24)

Changing to a new variable z = −2ikr , Eq. (24) can be
simplified as

d2f

dz2
+ (2`+ 1− z)df

dz

+
[
`+

1

2
− i(M + Enκ)δ

k

]
f = 0

(25)
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whose analytical solutions as r →∞ are the confluent hy-
pergeometric functions (Berakdar, 2001; Wang and Guo,
1979)

f(r) = F
(
`+

1

2
− i(M + Enκ)δ

k
, 2`+ 1,−2ikr

)
(26)

Thus, the radial wave function of the scattering states
are expressed

gk`(r) = Ak`(kr)
`+1/2 exp(ikr)

× F
(
`+

1

2
− i(M + Enκ)δ

k
, 2`+ 1,−2ikr

) (27)

We now study asymptotic form of the above expression
for large r to calculate the normalization constant Ak` of
radial wave functions and the phase shifts δ′`. Further,
the asymptotic expression of the confluent hypergeomet-
ric functions when |z| → ∞ is given by (Berakdar, 2001;
Wang and Guo, 1979):

F (η, γ, z)→ Γ(y)

Γ(η)
ezzη−γ +

Γ(y)

Γ(γ − η)
e±iπηz−η (28)

The upper sign in the second term applies for −π2 <
arg z < 3π

2 and the lower sign in the second term applies
for − 3π

2 < arg z < −π2 , and the symbol Γ denotes the

Gamma function. When z = −2ikr = |z|e−iπ/2, Eq. (28)
is then re-expressed as

F (η, γ, z)→Γ(y)

Γ(η)
ezzη−γe−iπ(η−γ)/2

+
Γ(y)

Γ(γ − η)
e−iπη/2z−η

(29)

from which, we have

F
(
`+

1

2
− i(M + Enκ)δ

k
, 2`+ 1,−2ikr

)

r→∞−−−→Γ(2`+ 1)(2kr)
−
(
`+

1

2
−
i(M + Enκ)δ

k

)
e−2ikr

×
exp
(
iπ
(
`+

1

2
− i(M + Enκ)δ

k

)
/2
)

Γ
(
`+

1

2
− i(M + Enκ)δ

k

)

+
Γ(2`+ 1)(2kr)

−
(
`+

1

2
−
i(M + Enκ)δ

k

)

Γ
(
`+

1

2
− i(M + Enκ)δ

k

)

× exp
(
iπ
(
`+

1

2
− i(M + Enκ)δ

k

)
/2
)

(30)

If we can write

Γ
(
`+

1

2
− i(M + Enκ)δ

k

)

=
∣∣∣Γ
(
`+

1

2
− i(M + Enκ)δ

k

)∣∣∣exp(iδ`)

(31)

then

Γ
(
`+

1

2
+
i(M + Enκ)δ

k

)

=
∣∣∣Γ
(
`+

1

2
− i(M + Enκ)δ

k

)∣∣∣exp(−iδ`)
(32)

where δ` is a real number. Equation (30) then becomes

F
(
`+

1

2
− i(M + Enκ)δ

k
, 2`+ 1,−2ikr

)

≈ Γ(2`+ 1)(2ikr)
−
(
`+

1

2
+
i(M + Enκ)δ

k

)

∣∣∣Γ
(
`+

1

2
− i(M + Enκ)δ

k

)∣∣∣

+
Γ(2`+ 1) e−2ikr(2kr)

−
(
`+

1

2
+
i(M + Enκ)δ

k

)

∣∣∣Γ
(
`+

1

2
+
i(M + Enκ)δ

k

)∣∣∣

(33)

then

F
(
`+

1

2
− i(M + Enκ)δ

k
, 2`+ 1,−2ikr

)

=
Γ(2`+ 1)exp(−ikr)exp

(
− π(M + Enκ)δ

2k

)

∣∣∣Γ
(
`+

1

2
− i(M + Enκ)δ

k

)∣∣∣(2kr)`+1/2

×
[

(−i)−`−1/2exp
(
− i
(
kr + δ` −

`π

2

+
(M + Enκ)δ ln(2kr)

k

))

− i−`−1/2exp
(
i
(
kr + δ` −

`π

2

+
(M + Enκ)δ ln(2kr)

k

))]

(34)

By r →∞, we have

F
(
`+

1

2
− i(M + Enκ)δ

k
, 2`+ 1,−2ikr

)

r→∞−−−→
Γ(2`+ 1)exp(−ikr)exp

(
− π(M + Enκ)δ

2k

)

∣∣∣Γ
(
`+

1

2
− i(M + Enκ)δ

k

)∣∣∣(2kr)`+1/2

×
[
i exp

(
− i
(
kr + δ` −

`π

2
+

(M + Enκ)δ ln(2kr)

k

))

− i exp
(
i
(
kr + δ` −

`π

2
+

(M + Enκ)δ ln(2kr)

k

))]

(35)
Substituting Eq. (35) into Eq. (27) leads to

gk`(r)
r→∞−−−→

2Ak`(kr)Γ(2`+ 1)exp
(
− π(M + Enκ)δ

2k

)

∣∣∣Γ
(
`+

1

2
− i(M + Enκ)δ

k

)∣∣∣

× sin
(
kr + δ` −

`π

2
+
π

4
+

(M + Enκ)δ ln(2kr)

k

)

(36)
In terms of the following asymptotic behavior

gk`(r)
r→∞−−−→ 2 sin

(
kr + δ` −

`π

2
+
π

4

+
(M + Enκ)δ ln(2kr)

k

) (37)

It is given in Ref. (Landau and Lifshitz, 2013; Zeng,
2000) that the radial wave functions of the continuous
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states for the Coulomb potential are normalized on the

“
k

2π
scale”. Because the new model potential is a short

distance potential in the PTDRSC Potential, so it has no
influence on asymptotic expression of the wave function
for large r.

It is useful to note that, considering the asymptotic
behavior of the wave function, the scattering amplitudes
are also valid if we take into account the relativity (Chen
et al., 2004; Schiff, 1995). In other words, the asymptotic
expression of the PTDRSC potential is identical to that
of the Coulomb potential when r →∞, i.e.

gk`(r)
r→∞−−−→ 2 sin

(
kr + δ′` −

`π

2
+
π

4

+
(M + Enκ)δ ln(2kr)

k

) (38)

The wave functions of the continuous states for the PT-

DRSC potential are normalized on the “
k

2π
scale”, too.

Here δ′` represents the phase shifts. If we compare Eq.
(38) with Eq. (30), we may obtain the normalization con-
stant of the continuous states as

Ak`(r) =
2`+1

∣∣∣Γ
(
`+

1

2
− i(M + Enκ)δ)

k

)∣∣∣
Γ(2`+ 1)

× exp
(π(M + Enκ)δ)

2k

)
(39)

and the phase shifts δ′` for a short ranged interaction.
It is the additional `′-independent phase shift, −(M +
Enκ)δ ln(2kr)/k, that distinguishes the Coulomb-like so-
lution from that for a short ranged potential and can be
calculated explicitly:

δ′` = δ` + π(`′ − `+
1

2
)/2

= argΓ
(
`+

1

2
− i(M + Enκ)δ/k

)

+ π(`′ − `+
1

2
)/2

(40)

where `′ depends to E and ζ similar to `.

Substituting Eq. (39) into (27), the normalized wave

functions of the continuous states on the “
k

2π
scale” are:

gk`(r) =
2`+1

∣∣∣Γ
(
`+

1

2
− i(M + Enκ)δ)

k

)∣∣∣
Γ(2`+ 1)

× exp
(π(M + Enκ)δ)

2k

)
exp(ikr)(kr)`+1/2

× F
(
`+

1

2
− i(M + Enκ)δ

k
, 2`+ 1,−2ikr

)

(41)

where k =
√
E2
nκ −M2.

Before concluding this section, let us study the prop-
erties of the scattering amplitude. As we know, once the
phase shifts are obtained, we can study the scattering am-
plitude and the differential cross section. For the sake of

simplicity, following (Lin, 1999) we can obtain the scat-
tering amplitude as

f(θ) = − i√
2πk

∑

`

[
exp(2iδ` − 1)

]
eimθ (42)

Due to
∑

`

eimθ = 2πδ(θ), we have for θ 6= 0

f(θ) = − i√
2πk

∑

i

[
exp(2iδ`)

]
eimθ (43)

from which we may calculate the cross section

σ(θ) = |f(θ)|2 =
∣∣∣− i√

2πk

∑

i

[
exp(2iδ`)

]
eimθ

∣∣∣
2

(44)

It should be noted that it is very difficult to obtain
an analytical expression for Eq. (37). Nevertheless, Dong
and Lozada-Cassou (Dong and Lozada-Cassou, 2004) have
obtained cross section in the special case as

σ(θ) = |f(θ)|2 =
∣∣∣− iΓ(1/2− iα) eiα ln

(
sin2(θ/2)

)
√

2k Γ(iα) sin(θ/2)

∣∣∣ (45)

by

Γ(iy)Γ(−iy) =
∣∣Γ(iy)

∣∣2 =
π

y sinh(πy)

and

Γ(
1

2
+ iy)Γ(

1

2
− iy) =

∣∣Γ(
1

2
+ iy)

∣∣2 =
π

y cosh(πy)

we have

σ(θ) =
α tanh(πα)

2k sin2(θ/2)

For more information about scattering, see Appendix
A.

3.1 Analytical properties of the scattering ampli-
tude

Here we shall discuss the analytical properties of the scat-
tering amplitude in the entire complex k plane by regard-
ing the scattering amplitude as the function of the phase
shifts. To this end, from Eq. (35), we need discuss analyt-

ical properties of Γ
(
`+

1

2
− i(M +Enκ)δ/k

)
. The Gamma

function, Γ(z), has simple poles at z = 0,−1,−2, . . .. To
see this we can use to write

Γ(z) =
Γ(z + 1)

z
=

Γ(z + 2)

z(z + 1)
=

Γ(z + 3)

z(z + 1)(z + 2)
= . . .

(46)
Clearly, Gamma function, Γ(z), has a pole at z = 0

with residue, at z = −1 with residue, at z = −2 with
residue, etc. Also Γ(z) is never zero in the complex plane.

Namely, the first order poles of Γ
(
`+

1

2
− i(M +Enκ)δ/k

)

is situated at

`+
1

2
− i(M + Enκ)δ

k
= 0,−1,−2, ... = −nr (47)

where nr = 0, 1, 2, . . .. At these poles, the corresponding
energy levels are given by Eq. (21).
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4 Discussion and Conclusions

In this work, we have investigated the solution of the Dirac

equation for particles with spin
1

2
in the PTDRSC poten-

tial. The continuous energy states of the Dirac equation
with this potential have been presented for any spin-orbit
quantum number κ. The wave functions have been ex-
pressed in terms of the hyper-geometric series of the con-

tinuous states on the
k

2π
scale. Also, formula of the phase

shifts was calculated. We recovered the nonrelativistic so-
lutions in the limiting case. We also presented some of the
analytical scattering amplitude.

Appendix A: Review to Scattering Cross-
Section

Once the differential scattering cross-section is known,
the total scattering cross-section σtot and the first trans-
port scattering cross section σtr may be calculated by
σtot =

∫
(dσ/dΩ)dΩ and σtr =

∫
(1 − cosθ)(dσ/dΩ)dΩ.

We can also obtain the ratio Ξ between the transport
and the total scattering cross section as Ξ = σtr/σtot. A
quantity which is very important for describing the scat-
tering processes in the interaction of electrons with the
matter, is the already mentioned transport cross section
σtr. It is now easy to calculate the probability of scat-
tering into angular rang from 0 to θ, that is given by
P (θ) = (2π/σtot)

∫∞
0

(dσ/dΩ) sinϑdϑ. Other useful quan-
tities that can be given by simple closed formulas are the
probability of forward scattering as, and the probability
of backscattering as. The knowledge of the forward and
of the backscattering probabilities allows us to calculate
the backscattering coefficient r(E0) (Dapor, 2004; Dapor
et al., 2000; Vicanek and Urbassek, 1991). For low atomic
number elements and for some oxides, the differential scat-
tering cross section can be approximated by the function
as
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