Amir Moslehi; Mohammad Hossein Choopan Dastjerdi
Abstract
In the present work performance of film badge as an alternative personal dosimeter for thermal neutrons is investigated. To do this, a cadmium-lead (Cd-Pb) filter with the same thickness as the tin-lead (Sn-Pb) filter is attached to the AERE/RPS badge. Since thermal neutrons are mixed with gamma rays, ...
Read More
In the present work performance of film badge as an alternative personal dosimeter for thermal neutrons is investigated. To do this, a cadmium-lead (Cd-Pb) filter with the same thickness as the tin-lead (Sn-Pb) filter is attached to the AERE/RPS badge. Since thermal neutrons are mixed with gamma rays, the dosimeter is irradiated by the 60Co gamma rays standard field of Karaj Secondary Standard Dosimetry Lab as well as the mixed neutron-gamma field of the radiography beamline of Isfahan Miniature Neutron Source Reactor. In the both fields, ten personal dose-equivalent values between 0.1 to 10 mSv are chosen. For any dose, three film badges are used and the net optical density is determined as the average of their optical densities. Finally, the calibration curves of the film badge are plotted to determine the dose-equivalent values. Obtained results reveal that film badge simultaneously determines the thermal neutrons and gamma rays dose fractions. Also, the thermal neutron doses are at most 50% different from the nominal values considered.
Mahdi Ghaed Rahmati; Mostafa hasanzadeh; Seyed Amir Hossein Feghhi
Abstract
Kinetic and neutronic parameters play an important role in analysis of reactors dynamic behavior. Some of these parameters include: effective multiplication factor (keff), reactivity (ρ), neutron flux as well as power spatial distributions, effective delayed neutron fraction (βeff) and prompt ...
Read More
Kinetic and neutronic parameters play an important role in analysis of reactors dynamic behavior. Some of these parameters include: effective multiplication factor (keff), reactivity (ρ), neutron flux as well as power spatial distributions, effective delayed neutron fraction (βeff) and prompt neutron lifetime (lp ). In this work, Monte Carlo modeling and analysis of Isfahan MNSR is performed for calculation of the kinetic and neutronic parameters of using MCNPX2.6 code, slope fit and perturbation methods. Relative differences between results of the MCNPX2.6 code in calculation of the ρ and βeff and the reference values are about 0.5% and 2.1%, respectively. The relative differences between the results of the slope fit and perturbation methods and MCNPX2.6 code in calculation of the parameter with the reference values are about 17.6%, 4.8% and 29.19%, respectively. Therefore, the results of these research show that the MCNPX2.6 code is suitable for calculation of the reactor kinetic parameters such as the βeff, while the perturbation method is a simple and convenient method for calculating the .