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H I G H L I G H T S

• A new nonlinear function has been developed for solving the eigenvalue problem.
• The JFNK approximation casts as an accelerated iterative approach.
• Numerical results were generated using FEMPT code.
• The results indicate that the JFNK method can converge faster than the standard procedure.

A B S T R A C T

The Jacobian-Free Newton-Krylov (JFNK) method has been widely used in solving
nonlinear equations arising in many applications. In this paper, the JFNK solver is
examined as an alternative to the traditional power iteration method for calculation of
the fundamental eigenmode in reactor analysis based on even-parity neutron transport
theory. Since the Jacobian is not formed the only extra storage required is associated
with the workspace of the Krylov solver used at every Newton step. A new nonlinear
function is developed for the even-parity neutron transport equation utilized to solve the
eigenvalue problem using the JFNK. This Newton-based method is compared with the
standard iterative power method for a number of multi-groups, one and two dimensional
neutron transport benchmarks. The results show that the proposed algorithm generally
ends with fewer iterations and shorter run times than those of the traditional power
method.
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1 Introduction

The k-eigenvalue calculation in criticality problems has
traditionally utilized the classical power iteration method
which has slow convergence order. In practical situa-
tions, fast iterative methods applied to improve the con-
vergence order of the power iterations. Several attempts
have been made to obtain more efficient algorithms using
accelerated techniques such as Chebyshev iteration (Hage-
man and Young, 2012) and Wielandt shift (Downar et al.,
2004). Accelerated approaches to power iteration have
been studied (Allen and Berry, 2002; Adams and Larsen,
2002) to improve upon the performance of power itera-
tion methods. The Jacobian-Free Newton-Krylov (JFNK)
method is a synergistic combination of Newton iterative
method for nonlinear equation and Krylov subspace iter-
ative methods for solving linear systems. In JFNK meth-
ods, the nonlinear iterative method is employed on the
eigenvalue search and a linear iterative method on the

system of equations (Chan and Jackson, 1984; Brown and
Saad, 1990).

Subspace iterations and Krylov subspace methods,
such as the Implicit Restarted Arnoldi Method (IRAM)
have been successfully applied to transport (Gupta and
Modak, 2004) and diffusion criticality problems (Verdú
et al., 1999). These methods can also be used to find mul-
tiple eigenmodes, not only the fundamental mode. Re-
cently, the use of JFNK methods have also been investi-
gated in conjunction with IRAM as a tool for BWR modal
analysis (Mahadevan and Ragusa, 2008). In the current
work, a similar JFNK method with a new nonlinear func-
tion is explored as an alternative to the power iteration for
seeking the eigenvalue of the even-parity neutron trans-
port equation. In 2010, Martin presented the nonlinear
solution scheme for implicit coupling of the convergence
accelerated transport method (Martin, 2010).

In the first part of this work, a computer program
has been developed based on a variational principle for
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the second order neutron transport equation. The pro-
gram employs Lagrange polynomials as spatial basis func-
tions for finite element formulation and spherical harmon-
ics for the directional dependence of the solution. In neu-
tronics, finite element methods developed for the first-
order Boltzman transport equation and followed for its
equivalent second-order forms originated by Veladimirov
(Vladimirov, 1963). Synge et. al (Synge, 1957) exploited
the method of hypercircle for the approximate solution
of second-order and fourth-order equations in mechan-
ics which inspired Ackroyd and Pendlebury (Ackroyd and
Pendlebury, 1961) and Ackroyd (Ackroyd, 1962) to de-
velop a hypercircle method for the first-order Boltzmann
equation. A detailed review on numerical methods in neu-
tron transport theory can be found in Lewis (1998) (Lewis
and Miller, 1984). The even parity neutron transport the-
ory has been reviewed by Ackroyd et al. (Ackroyd et al.,
1987) and Ackroyd (Ackroyd, 1997).

The other sections of the paper is organized as fol-
lows: In section 2 we present the basics of Newton-Krylov
method and the JFNK approximation. In section 3 the
even-parity neutron transport theory is discussed, and in
section 4 the application of JFNK method as an alterna-
tive fast convergence algorithm for power iteration is men-
tioned. We then apply the ideas developed to the multi-
group even parity transport equations. Finally in sections
5 and 6 numerical results for a number of benchmarks will
be presented and discussed in order to demonstrate the
computational efficiency of the new approach.

2 Fundamentals of the JFNK method

Origins of the Jacobian-Free Newton-Krylov method can
be traced back to publications motivated by the solution of
ordinary or partial differential equations (Gear and Saad,
1983; Brown and Saad, 1990). The primary motivation
in all cases appears to be the ability to perform Newton
iterations without forming the Jacobian. This is a nested
iteration method consisting of at least two and usually
four levels. The primary levels, which give the method its
name, are the loops over the Newton corrections and the
loop building up the Krylov subspace out of which each
Newton correction is drawn. Interior to the Krylov loop,
a preconditioner is usually required, which can itself be
direct or iterative.

2.1 Newton methods

The Newton iteration for arbitrary nonlinear equation
Γ(u) = 0 derives from a multivariate Taylor expansion
about the current point uk:

Γ(uk+1) = Γ(uk)(uk+1 − uk) + High order terms. (1)

Setting the right-hand side zero and neglecting the terms
of higher-order curvature yields a strict Newton method
which is an iteration over a sequence of linear systems

J(uk)δ(uk) = −Γ(uk)

uk+1 = uk + δ(uk) ; k = 0, 1, ...
(2)

by a given initial guess u0. Here, Γ(u) is the vector-valued
function of nonlinear residuals, J(u) is its associated Jaco-
bian matrix, u is the state vector to be found, and k is the
iteration index. The Newton iteration is terminated based
on a required drop in the norm of the nonlinear residual

‖Γ(uk)‖
‖Γ(u0)‖ < total residual (3)

For a scalar problem, discretized into n equations with
n unknowns, we have

Γ(u) = {Γ1,Γ2, ...,Γi, ...Γn} (4)

and

u = {u1, u2, ..., ui, ...un} (5)

In vector notation, a general element (of the ith row
and jth column) of the Jacobian matrix is derived by

Jij =
∂Γi(u)

∂uj
(6)

Forming each element of J(u) requires taking analytic
or discrete derivatives of the system of equations with re-
spect to u which is often a cumbersome task.

2.2 Krylov subspace methods

Krylov methods are approaches for solving large linear sys-
tems introduced as direct methods in the 1950s (Hestenes
and Stiefel, 1952), which their popularity took off after
Reid (Reid, 1971) reintroduced them as iterative meth-
ods. There are projection or generalized projection meth-
ods (Saad, 2003) for solving Ax = b using the Krylov
subspace, Kj ,

Kj = span(r0, Ar0, A
2r0, ..., A

j−1r0) (7)

where r0 = b− Ax0. These methods require only matrix-
vector products to carry out the iteration and not the
individual elements of A. This is a key to their use with
Newton’s method.

A wide variety of iterative methods such as the Gen-
eralized Minimal RESidual method (GMRES), the Bi-
Conjugate Gradient STABilized (BiCGSTAB), and the
Transpose-free Quasi Minimal Residual (TFQMR) fall
within the Krylov taxonomy. A principal bifurcation in
the family tree is applicability to non-symmetric systems.

The widely used GMRES (Saad and Schultz, 1986) is
an Arnoldi-based method. In the GMRES, the Arnoldi
basis vectors form the trial subspace out of which the solu-
tion is constructed. One matrix-vector product is required
per iteration to create each new trial vector, and the it-
erations are terminated based on a by-product estimate
of the residual that does not require explicit construction
of intermediate residual vectors or solutions. As a result
of previous studies, we tend to use GMRES almost exclu-
sively with JFNK.
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2.3 Jacobian-Free Newton-Krylov methods

In the JFNK approach, a Krylov method is used to solve
the linear system of equations given by Eq. (2). An initial
linear residual, r0, is defined, given an initial guess, δu0,
for the Newton correction,

r0 = −Γ(u)− J(u)δu0 (8)

Note that the nonlinear iteration index, k, has been
dropped. This is due to the fact that the Krylov iteration
is performed at a fixed k. Let j be the Krylov iteration
index. Since the Krylov solution is a Newton correction,
and owing that a locally optimal move was just made in
the direction of the previous Newton correction, the ini-
tial guess for δu0 in the Krylov iteration is typically zero.
This is asymptotically a reasonable guess in the Newton
context, as the converged value for δu should approach
zero in late Newton iterations.

The action of the Jacobian in the form of matrix-vector
products is approximated by

J(u)V =
[Γ(u+ εV )− Γ(u))]

ε
(9)

where ε is a small perturbation and V is an arbitrary vec-
tor. The error in this approximation is proportional to
ε. This matrix-free approach has many advantages which
the most attractive is the Newton-like nonlinear conver-
gence rate without costs of forming or storing the true
Jacobian. In practice one forms a matrix for precondition-
ing purposes, so the common description of this family of
methods is eschewed as fully matrix-free.

Here, we discuss various options for choosing the per-
turbation parameter ε in Eq. (9), which is obviously sen-
sitive to ε for given u and V . The best value for ε to use
for a scalar finite-difference of a single argument can be
accurately optimized as a balance of these two quantifi-
able trades-offs. If ε is too large, the derivative is poorly
approximated and if it is too small, the result of the finite
difference is contaminated by floating-point round-off er-
ror. The ε was routinely used to set to some value larger
than the square root of the machine epsilon (εmach).

When the precision is known to be limited in the eval-
uation of Γ(u), then another effective formula for the eval-
uation of ε is (Knoll and Keyes, 2004)

ε =

√
(1 + ‖u ‖)εmach

‖V ‖ (10)

which is used in this work.

2.4 Inexact Newton methods

Since the use of an iterative technique to solve Eq. (2)
does not require the exact solution of the linear system,
the resulting algorithm is categorized as an inexact New-
ton method. A simple inexact method results in the fol-
lowing convergence criteria for each linear iteration

‖Jkδuk + Γ(uk)‖ < γ‖Γ(uk)‖ (11)

where γ, the forcing factor, is a constant smaller than
unity. A too large value for γ results in less work for the

Krylov method but more nonlinear iterations, whereas a
too small value for γ results in more Krylov iterations per
Newton iteration. Several strategies for optimizing the
computational work through the variable forcing term γ
are given by Eisenstat and Walker (Eisenstat and Walker,
1996).

2.5 Preconditioning the JFNK method

The purpose of preconditioning the JFNK method is to
reduce the number of Krylov iterations, as manifested by
efficiently clustering eigenvalues of the iteration matrix.
Traditionally, for linear problems, one chooses a few iter-
ations of a simple iterative method such a classical power
method as a preconditioner. A goal of the JFNK approach
is to avoid forming the Jacobian matrix J(u), and, as will
be shown, an effective preconditioner for JFNK can typi-
cally be simpler than the strict Jacobian of the system. A
linear preconditioner can be applied on the left or on the
right, or on both, if suitably factored. Both strategies, left
or right preconditioning, may be employed in a Jacobian-
free context, and there are pros and cons to both sides of
the coefficient matrix. Using right preconditioning, one
solves

(JP−1)(Pδu) = −Γ(u) (12)

where P symbolically represents the preconditioning ma-
trix. Right preconditioning is actually realized through a
two-step process: First, solving

(JP−1)w = −Γ(u) (13)

for w. Then solving

δu = P−1w (14)

for δu. Thus, while we may refer to the matrix P , opera-
tionally the algorithm only requires the action of P−1 on a
vector. Note that if a distributed or segregated approach
is used for preconditioning, then P−1 may be formed as
a linear combination of approximate inverses of submatri-
ces. This operation is done once per GMRES iteration
and only the matrix elements required for the action of
P−1 are formed.

There are various methods for choosing a precondition-
ing matrix like diagonal scaling, incomplete Cholesky fac-
torization, multigrid, domain decomposition, Sparse ap-
proximate inverses, and hierarchical representations. The
approach for construction of P is chosen automatically
depending on the adopted Krylov subspace method. For
example, in GMRES method, the diagonal scaling strat-
egy is referred. A detailed study about preconditioning
methods can be found in (Saad, 2003).

3 Even-parity neutron transport theory

Consider the one-group steady state neutron transport
equation

−→
Ω .∇Φ0(−→r ,−→Ω ) + Σt(r)Φ0(−→r ,−→Ω ) =∫

4π

dΩ′ Σs(
−→r ,
−→
Ω′,
−→
Ω ) + Φ0(−→r ,

−→
Ω′) + S(−→r ,−→Ω )

(15)
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in volume V . Expanding the scattering kernel into series
of Legendre polynomials one can write Eq. (15) in the
following form

−→
Ω .∇Φ0(−→r ,−→Ω ) +

∞∑

n=0

2n+ 1

4π
Σsn(r)×

∫

4π

Pn(µ0)Φ0(−→r ,
−→
Ω′)dΩ′ = S(−→r ,−→Ω )

(16)

where Pn(µ0) is the Legendre polynomial of order n, and
Σsn(r) is the scattering moments.

In even-parity method, the angular flux, scattering
cross sections and sources are divided into even and odd
parities (Ackroyd, 1978). It is well known that Eq. (16)
can be cast into the pair of parity equations

−→
Ω .∇Φ−0 (−→r ,−→Ω ) + CΦ+

0 (−→r ,−→Ω ) = S+(−→r ,−→Ω ) (17)

−→
Ω .∇Φ−0 (−→r ,−→Ω ) +G−1Φ−0 (−→r ,−→Ω ) = S−(−→r ,−→Ω ) (18)

where C and G−1 denote operators for an arbitrary even

function u+(−→r ,−→Ω ) and odd function u−(−→r ,−→Ω ) respec-
tively defined as

Cu+(−→r ,−→Ω ) =
∞∑

n=0,even

2n+ 1

4π
Σn

∫

4π

Pn(µ0)u+(−→r ,
−→
Ω′)dΩ′

G−1u−(−→r ,−→Ω ) =
∞∑

n=0,odd

2n+ 1

4π
Σn

∫

4π

Pn(µ0)u−(−→r ,
−→
Ω′)dΩ′

(19)

The operators C and G−1 are self adjoint and positive
definite.

The even and odd parity flux, source and scattering
cross section are defined as

Φ±(−→r ,−→Ω ) =
1

2
[Φ(−→r ,−→Ω )± Φ(−→r ,−→−Ω)]

S±(−→r ,−→Ω ) =
1

2
[S(−→r ,−→Ω )± S(−→r ,−→−Ω)]

σ±(−→r ,
−→
Ω′,
−→
Ω ) =

1

2
[σs(
−→r ,
−→
Ω′,
−→
Ω )± σs(−→r ,

−−→
−Ω′,

−→
Ω )]

(20)

If the trial function Φ+ be used instead of exact solu-
tion Φ+

0 , then volume and surface error i.e. εV (Φ+) and
ε∂V (Φ+) would be created as the remainder of unsatisfied
equations. Collecting the volume error and the surface
boundary error gives (Abbassi et al., 2011)

εV (Φ+) + ε∂V (Φ+) +K+(Φ+) =

H−+(Φ−0 ,Φ
+
0 , S

+, T )
(21)

where the right hand side of Eq. (21) is a positive con-
stant value. Total error i.e. sum of εV (Φ+) and ε∂V (Φ+)
vanishes as Φ+ closes the exact solution. Equation (21)
suggests the following inequality for the K+(Φ+) func-
tional:

K+(Φ+) ≤ H−+(Φ−0 ,Φ
+
0 , S

+, T ) (22)

A good approximation for Φ+
0 can be obtained by min-

imizing εV (Φ+) + ε∂V (Φ+) with respect to the arbitrary

coefficients specifying Φ+. Minimization of εV (Φ+) +
ε∂V (Φ+) is equivalent to maximization of K+(Φ+), since
it defines a maximum principle with trial function Φ+:

K+(Φ+) =

∫

V

∫

4π

{2(S+Φ+) + 2(S−G(
−→
Ω .
−→∇Φ+))

− (
−→
Ω .
−→∇Φ+G(

−→
Ω .
−→∇Φ+))− (Φ+C(Φ+))}dΩ dV

+ 4

∫

S

∫
−→
Ω .−→n<0

|−→Ω .−→n |T (r,Ω)Φ+dΩ dS

− 2

∫

S

∫
−→
Ω .−→n<0

|−→Ω .−→n |(Φ+)2dΩ dS

(23)

which expresses the spatial and angular parts of Φ+(r,Ω)
in the equation containing S+, S− and T .

4 An alternative eigenvalue search
method using the JFNK approximation

In order to numerically solve this eigenvalue problem the
spatial domain in the multigroup equations must be dis-
cretized.

For each energy group the multi-group even-parity
transport equation is

−−→Ω .−→∇Gg[
−→
Ω .
−→∇Φ+

g ] + Cg[Φ
+
g ] =

S+
g −
−→
Ω .
−→∇GgS−g , g = 1, 2, ...G

(24)

where the operators Gg (inverse of G−1) and Cg are de-
fined in terms of the cross-sections σg and σsg and in ac-
cord with the general definition (Eq. (19)). Some theo-
retical aspects and mathematical works (Ackroyd, 1997)
leads us to multi-group functional in Eq. (25):

F+
g (Φ+

g ) = F+
sg(Φ

+
g ) + F+

fg(Φ
+
g ) (25)

which F+
sg(Φ

+
g ) contains both up and down scattering

terms and F+
fg(Φ

+
g ) contains fission source.

F+
sg(Φ

+
g ) =

G∑

g′=1

∑

leven

2l + 1

4π

g′g∑

sl

(1− δg′g)×
∫

4π

Pl(µ0)Φ+
g′ dΩ′

+
G∑

g′=1

∑

lodd

2l + 1

4π

g′g∑

sl

(1− δg′g)×
∫

4π

Pl(µ0)Φ−g′ dΩ′

(26)

F+
fg(Φ

+
g ) =

χg
4π

G∑

g′=1

υ
∑

fg′

∫

4π

Φ+
g′(r,Ω

′) dΩ′ (27)

where χg is fission spectrum. The extension of one-group
even-parity neutron transport equation to multi-group ap-
proximation is straightforward

L+
g = [Φ(i+1)

g ] =
1

λ
F+
fg[Φ

(i)
g ] , g = 1, 2, ..., G (28)
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where Φ
(i)
g =

∫
4π

[Φ+
g (r,Ω)]i dΩ is the scalar flux at ith

iteration and the L+
g is a scattering included matrix op-

erator. In the even parity neutron transport theory, the
entire L+ operator for all groups can be written as the
following matrix form

L+ =




F+
1 −A+2,1

1,1 · · · −A+G,1
1,n

...
...

. . .
...

−A+G,1
G,1 −A+G−1,G

G,n · · · F+
G


 (29)

where

A+g,g′
g,n =

+g,g′∑

sn

∫

V

dV

∫

4π

dΩ′Pn(µ0)−

∗g,g′∑

sn

∫

V

dV

∫

4π

dΩ′Pn(µ0)[
−→
Ω .
−→∇G(

−→
Ω .
−→∇)]

(30)

is the group-wise (operator) matrix element of anisotropic
scattering kernel of order of n.

In traditional power method the eigenvalue λ is up-
dated via

λ(i+1) =

∑

g′

υ
∑

fg′

∫

V

Φ
(i+1)
g′ dV

1

λ(i)

∑

g′

υ
∑

fg′

∫

V

Φ
(i)
g′ dV

= c
∑

g′

υ
∑

fg′

∫

V

Φ
(i+1)
g′ dV

(31)

where c is a constant value which is computed from previ-
ous iteration (Duderstadt et al., 1976). By initial guesses

for λ and Φ
(0)
g′ , and solving Eq. (28) in each iteration,

finally the system of (G+ 1) equations converges.
To generalize the use of JFNK methods for coupling

physical subsystems Xu and Downar (Downar, 2005) de-
scribed an approach to apply the JFNK method to nested
iteration schemes. These nested schemes, referred to as
fixed point iterations, are defined by the function Y (u)
with the solution given by u, such that Eq. (28) with

u =




Φ+
1
...

Φ+
G

λ


 (32)

and the following function Γ(u) in nonlinear system

Γ(u) =




L+
1 [Φ+

1 ]− 1

λ
F+
f1[Φ+

1 ]

...

L+
G[Φ+

G]− 1

λ
F+
fG[Φ+

G]

λ− c
G∑

g′=1

υ
∑

fg′

∫

V

Φ+
g′dV




(33)

The update formula of λ (Eq. (31)) is imposed by the
final equation in the nonlinear system of G+ 1 equations.

From Eq. (6), the Jacobian (G+ 1, G+ 1) of the non-
linear function Γ(u) is given by

J(u) =




L+
g −

1

λ
F+
fg

1

λ2
F+
fg[Φ

+
g ]

c

G∑

g′=1

υ
∑

fg′

∫

V

dV 1


 ,

g = 1, 2, ..., G

(34)

However, in the context of a Newton-Krylov method it
is unnecessary to explicitly calculate the Jacobian in this
manner, instead the construction of the Jacobian-vector
product J(u)υ will be investigated. By using Eq. (9) the
Jacobian of the nonlinear system is neither formed nor
stored. Substituting Γ(u) and J(u) in Eq. (2) leads to




L+
g −

1

λ
F+
fg

1

λ2
F+
fg[Φ

+
g ]

c
G∑

g′=1

υ
∑

fg′

∫

V

dV 1



[
δΦ+

g

δλ

]

= −




L+
g [Φ+

g ]− 1

λ
F+
fg[Φ

+
g ]

λ− c
G∑

g′=1

υ
∑

fg′

∫

V

Φ+
g′dV




(35)

which can again be evaluated on a group-wise basis.
This is a nonsymmetrical coupled system that can be

solved iteratively with Krylov subspace methods.

As is clear from Eq. (34), the goal is

[
δΦ+

g

δλ

]
→ 0 which

means the convergence of the equations system. Because
of using Jacobian free strategy, there is no need to form
the left hand side of the Eq. (35). The algorithm of fast
iterative JFNK method for solving eigenvalue problems
presented in Fig. 1.

Aside from avoiding the inner iterations, this method
has the added benefit of treating both upscatterings and
downscattering equally. There are no additional iterations
required over energy groups with non-negligible upscatter-
ing. Looping through energy groups in a given sequence is
an artifact way to store data. In this case the coupling of
energy groups is treated at the level of Newton iteration.

5 Numerical results

Numerical results were generated for a number of sample
problems using a computer code named FEMPT (Abbassi
et al., 2011), based on even-parity spherical harmonics and
finite element method in X − Y geometry, which imple-
ments the JFNK method developed for the generalized
eigenvalue problem. The FEMPT is also capable of per-
forming standard power iterations in anisotropic scatter-
ing model with no restriction on the angular approxima-
tion. This code will be used to examine the performance of
the JFNK method compared to that of the classical power
method and the forcing factor involved in the Newton-
based approach will be studied to determine their influ-
ence on performance. To utilize the matrix-free method,
the assembling approach was changed from the element
based to the node based method.

5
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Figure 1: The algorithm of fast iterative JFNK method.

The module associated with the JFNK method was
designed to interact with the FEMPT code primarily
through function calls. Sparse storage is utilized for the
storage of the L+j

g matrices and the Preconditioned Con-
jugate Gradient algorithm was used to solve the within-
group problem during the power iteration process. The
GMRES method was used to solve the linear Newton step
in all of the JFNK processes.

Two reactor benchmarks were used to evaluate the per-
formance of the JFNK method via FEMPT:

1. Swimming Pool Reactor : The benchmark is a 2-D
rector with five regions defined for the IAEA re-
search program on transport theory and advanced
reactor calculations (Rose, 1983). The one-group
system shown in Fig. 2 is bare, the scattering is
isotropic, and regions 1 and 3 contain fissile mate-
rials. Table 1 gives the nuclear data. The refer-
ence eigenvalue, is calculated by Wood and Williams
(Wood and Williams, 1984) for P3 angular approxi-
mation.

2. Irregular 2-D Geometry Problem: This problem is
model of a hexagonal PWR assembly in which a
natural uranium pin at the center is surrounded by
12 identical enriched fuel pins, as shown in Fig. 3.

Thanks to the symmetry, only
1

12
of assembly is sim-

ulated. This problem was also modeled by TPTRI
code (Hongchun et al., 2007). The up-scattering in-
cluded two-group cross-sections of each material is
presented in Table 2.

Table 1: Cross-sections of swimming pool rector problem.

Cross-sections (cm−1)
Region σt σs υσf

1 0.60 0.53 0.079
2 0.48 0.20 0.0
3 0.70 0.66 0.043
4 0.65 0.50 0.0
5 0.90 0.89 0.0

Figure 2: Geometry of swimming pool reactor (Dimensions
are in cm).

Figure 3: Geometry of PWR assembly (Dimensions are in
cm).

The P3 approximation has been used for all bench-
marks. The forcing factor is set to 10−1 and the pertur-
bation parameter is chosen according to Eq. (10). Com-
parisons made with power iteration using the tight conver-
gence criteria set and non-preconditioned inner iterations
are given in Table 3.
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Table 2: Cross-sections of the hexagonal PWR assembly (cm−1).

σs
Energy group Material zone σt σa σg−1 σg−2 υσf

1
Fuel 0.196647 0.008627 0.178 0.01002 0.006203

Moderator 0.222064 0.000684 0.1995 0.02188 0.0
Natural uranium 0.196647 0.008627 0.178 0.01002 0.006203

2
Fuel 0.596159 0.06957 0.001089 0.5255 0.1101

Moderator 0.887874 0.008016 0.001558 0.8783 0.0
Natural uranium 0.596159 0.06957 0.001089 0.5255 0.1101

From Table 3, it can be seen that for these input pa-
rameters JFNK offers an improvement in convergence of
the standard power iteration and in all cases the total it-
eration count and the execution time is reduced.

To examine the convergence rate of the JFNK ap-
proach against the power method, the global fission source
error for both benchmarks is plotted vs. the iterations in
Figs. 4 and 5.

Figure 4: Convergence order of JFNK method for swimming
pool reactor.

Figure 5: Convergence order of JFNK method for irregular
2-D geometry.

These plots confirm that the JFNK approach is capa-
ble of achieving impressive convergence rate. The JFNK
method is theoretically sensitive to the initial guess. The
proximity of the initial guess to the solution is extremely
important as convergence of the Newton’s method is a
local and not a global quantity. For this reason the
JFNK approach has been tested by using a variety of
initial guesses. These are generated by first perform-
ing some number of standard power iterations, which
themselves were initiated with a flat flux. The sequence
of numbers of initial power iterations used was set to
{1, 2, 3, 4, 5, 10, 15 and 20}.

The number of Newton iterations and calculated eigen-
values for both benchmarks are given in Table 4. Figure 6
shows the effect of increasing the number of initial power
iteration on the programs run time.

According to the Table 4, although the number of New-
tons iteration have been reduced by increasing the number
of initial power iterations, Fig. 5 emphasized that increas-
ing the number of initial power iterations makes some ad-
ditional computational cost. However only a few number
of initial power iterations is quite enough to achieve the
optimum condition.

The choice of the forcing factor sequence, γ, is an im-
portant criterion which is a constant smaller than unity.
Constant values of 10−1, 10−2, and 10−3 were used and
the results of these numerical experiments for JFNK are
given in Figs. 7 and 8 for benchmarks 1 and 2, respec-
tively.

Figure 6: Effect of initial power iteration on execution time.
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Table 3: Comparison between JNFK and power method results.

Benchmark Method Keff
Newton(Krylov) Outer(Inner) Run time

Reference eigenvalue
iteration iteration (sec)

Swimming pool Power 1.00712 - 61(1794) 33.70 1.0069
reactor JNFK 1.00767 18(173) - 19.80 (Wood and Williams, 1984)

Irregular 2-D Power 1.08532 - 95(3116) 20.60 1.085775
geometry JNFK 1.08598 12(146) - 8.90 (Hongchun et al., 2007)

Table 4: Number of Newton iterations and calculated eigenvalues according to number of initial power iteration.

No. of Newton’s iteration Calculated eigenvalue
No. of initial

Swimming pool reactor Irregular 2-D geometry Swimming pool reactor Irregular 2-D geometry
power iteration

0 18 12 1.007671 1.085983
1 11 8 1.007671 1.085981
2 9 7 1.007671 1.085973
3 8 7 1.007673 1.085975
4 7 6 1.007672 1.085982
5 6 6 1.007673 1.085980
10 5 5 1.007672 1.085976
15 4 4 1.007672 1.085979
20 3 4 1.007672 1.085979

Figure 7: Convergence of JFNK method for swimming pool
reactor benchmark as a function of γ.

Figure 8: Convergence of JFNK method for irregular 2-D
geometry benchmark as a function of γ.

Interestingly, in this case it can be seen that JFNK now
performs much better and by changing the value of forc-
ing factor the requiring number of Newton and GMRES
iterations is reduced.

6 Conclusion

In this work a new nonlinear function has been developed
which is capable of solving the eigenvalue problem associ-
ated with the multi-group even parity transport equations.
Recognizing that the traditional power iteration can be
written as a nonlinear system of equations it is possible to
cast an inexact Newton method employing the Jacobian-
Free approximation as an accelerated iterative approach.
This method also has the benefit of not requiring any spe-
cial treatment of upscattering because of within-group it-
erations is given equal treatment. The JFNK approach
developed for the eigenvalue problems is not power iter-
ation dependent, instead these methods rely entirely on
matrix vector products in the evaluation of the nonlinear
function.

Numerical results were generated using FEMPT code
which solved even-parity neutron transport equation and
implements the JFNK method and the traditional power
method. The computational results indicate that the
JFNK method can converge as fast as several times than
the standard procedure.
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