Abbassi, M., Zolfaghari, A., Minuchehr, A., et al. (2011). An adaptive finite element approach for neutron transport equation. Nuclear Engineering and Design, 241(6):2143–2154.

Ackroyd, R. (1962). Geometrical methods for determining the accuracy of approximate solutions of the Boltzmann equation: Part I one-group scattering and absorbing media. Journal of

Mathematics and Mechanics, pages 811–850. Ackroyd, R. (1978). A finite element method for neutron transport. Some theoretical considerations. Annals of Nuclear Energy, 5(2):75–94.

Ackroyd, R., Fletcher, J., Goddard, A., et al. (1987). Some recent developments in finite element methods for neutron transport. In Advances in Nuclear Science and Technology, pages 381–483. Springer.

Ackroyd, R. and Pendlebury, E. (1961). Survey of theoretical calculation methods, article in criticality control. In Karlsrush Symposium, OECD, European Nuclear Energy Agency.

Ackroyd, R. T. (1997). Finite element methods for particle transport: applications to reactor and radiation physics. Research Studies Press.

Adams, M. L. and Larsen, E. W. (2002). Fast iterative methods for discrete-ordinates particle transport calculations. Progress in Nuclear Energy, 40(1):3–159.

Allen, E. and Berry, R. (2002). The inverse power method for calculation of multiplication factors. Annals of Nuclear Energy, 29(8):929–935.

Brown, P. N. and Saad, Y. (1990). Hybrid Krylov methods for nonlinear systems of equations. SIAM Journal on Scientific and Statistical Computing, 11(3):450–481.

Chan, T. F. and Jackson, K. R. (1984). Nonlinearly preconditioned Krylov subspace methods for discrete Newton algorithms. SIAM Journal on scientific and statistical computing, 5(3):533–542.

Downar, T., Lee, D., Xu, Y., and Kozlowski, T. (2004). PARCS v2. 6, US NRC core neutronics simulator. School of Nuclear Engineering, Purdue University.

Downar, Y. (2005). The implementation of matrix free Newton/ Krylov methods based on a fixed point iteration.

Duderstadt, J. J., Hamilton, L. J., et al. (1976). Nuclear reactor analysis, volume 84. Wiley New York.

Eisenstat, S. C. and Walker, H. F. (1996). Choosing the forcing terms in an inexact Newton method. SIAM Journal on Scientific Computing, 17(1):16–32.

Gear, C. W. and Saad, Y. (1983). Iterative solution of linear equations in ODE codes. SIAM journal on scientific and statistical computing, 4(4):583–601.

Gupta, A. and Modak, R. (2004). Krylov sub-space methods for K-eigenvalue problem in 3-D neutron transport. Annals of Nuclear Energy, 31(18):2113–2125.

Hageman, L. A. and Young, D. M. (2012). Applied iterative methods. Courier Corporation. Hestenes, M. R. and Stiefel, E. (1952). Methods of conjugate gradients for solving linear systems, volume 49. NBS Washington, DC.

Hongchun, W., Pingping, L., Yongqiang, Z., et al. (2007). Transmission probability method based on triangle meshes for solving unstructured geometry neutron transport problem. Nuclear engineering and design, 237(1):28–37.

Knoll, D. A. and Keyes, D. E. (2004). Jacobian-free Newton-Krylov methods: a survey of approaches and applications. Journal of Computational Physics, 193(2):357–397.

Lewis, E. E. and Miller, W. F. (1984). Computational methods of neutron transport.

Mahadevan, V. and Ragusa, J. (2008). Novel hybrid scheme to compute several dominant eigenmodes for reactor analysis problems.

Martin, W. (2010). Nonlinear acceleration methods for even parity neutron transport.

Reid, J. K. (1971). On the method of conjugate gradients for the solution of large sparse systems of linear equations. In Pro. the Oxford conference of institute of mathematics and its applications, pages 231–254.

Rose, P. (1983). Proceedings: thermal-reactor benchmark calculations, techniques, results, and applications. Technical report, Brookhaven National Lab.

Saad, Y. (2003). Iterative methods for sparse linear systems, volume 82. siam.

Saad, Y. and Schultz, M. H. (1986). GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on scientific and statistical computing, 7(3):856–869.

Synge, J. L. (1957). The hypercircle in mathematical physics. University Press Cambridge.

Verd´u, G., Mir´o, R., Ginestar, D., et al. (1999). The implicit restarted Arnoldi method, an efficient alternative to solve the neutron diffusion equation. Annals of nuclear energy, 26(7):579–593.

Vladimirov, V. (1963). Mathematical problems in the onevelocity theory of particle transport. Technical report, Atomic Energy of Canada Limited.

Wood, J. and Williams, M. (1984). Recent progress in the application of the finite element method to the neutron transport equation. Progress in Nuclear Energy, 14(1):21–40.