An international journal published by K. N. Toosi University of Technology

Document Type : Research Article

Author

Department of Physics‎, ‎Faculty of Science‎, ‎Hakim Sabzevari University‎, ‎P.O‎. ‎Box 397‎, ‎Sabzevar‎, ‎Iran

Abstract

The role of saturation property of cold nuclear matter is‎ ‎examined in order to describe the steep falloff phenomenon of the‎ ‎measured fusion cross sections at energies far below the Coulomb‎ ‎barrier for 58Ni+54Fe colliding system‎. ‎For this aim‎, ‎the‎ ‎double-folding microscopic approach which is modified by modeling‎ ‎the repulsive core effects in the nucleon-nucleon interactions is‎ ‎used to calculate the nuclear interaction potential‎. ‎Moreover‎, ‎the‎ ‎theoretical values of the fusion cross section‎, ‎S factor‎, ‎and‎ ‎the logarithmic derivative are computed using the coupled-channel‎ ‎technique‎, ‎including couplings to the low-lying 2+ and 3-‎ ‎states in target and projectile‎. ‎The results obtained reveal that‎ ‎the corrective effects of cold nuclear matter can be responsible for‎ ‎the description of the fusion hindrance phenomenon in our chosen system‎.

Highlights

  • The saturation property of NM leads to appear a shallow pocket in the inner regions of the potential.
  • Fusion hindrance phenomenon occurs at energies below Ec.m. = 87.29 MeV for 58Ni+54Fe colliding system.
  • The incompressibility e ects are responsible for describing the measured fusion cross sections of 58Ni+54Fe.
  • Results show reasonable agreements with the experimental data of the S(E) and L(E) factors.

Keywords

Balantekin, A. B. and Takigawa, N. (1998). Quantum tunneling in nuclear fusion. Reviews of Modern Physics, 70(1):77.

Beckerman, M. (1988). Sub-barrier fusion of two nuclei. Reports on Progress in Physics, 51(8):1047.

Bertsch, G., Borysowicz, J., McManus, H., et al. (1977). Interactions for inelastic scattering derived from realistic potentials. Nuclear Physics A, 284(3):399–419.

Dasgupta, M., Hinde, D. J., Rowley, N., et al. (1998). Measuring barriers to fusion. Annual Review of Nuclear and Particle Science, 48(1):401–461.

De Vries, H., De Jager, C., and De Vries, C. (1987). Nuclear charge-density-distribution parameters from elastic electron scattering. Atomic Data And Nuclear Data Tables, 36(3):495-536.

Esbensen, H. and Mi¸sicu, S¸. (2007). Hindrance of 16O+208Pb fusion at extreme sub-barrier energies. Physical Review C, 76(5):054609.

Gharaei, R. (2017). Analysis of the low-and high-energy fusion cross sections: the case of 58Ni+54Fe. Journal of Physics G: Nuclear and Particle Physics, 44(4):045108.

Ghodsi, O. N. and Gharaei, R. (2011). Equation of state of hot polarized nuclear matter and heavy-ion fusion reactions. Physical Review C, 84(2):024612.

Ghodsi, O. N. and Gharaei, R. (2012a). Temperature dependence of the repulsive core potential in heavy-ion fusion reactions. Physical Review C, 85(6):064620.

Ghodsi, O. N. and Gharaei, R. (2012b). The study of the nucleus–nucleus interaction potential for 16O+27Al and 16O+28Si fusion reactions. Modern Physics Letters A, 27(06):1250037.

Hagino, K., Rowley, N., and Kruppa, A. T. (1999). A program for coupled-channel calculations with all order couplings for heavy-ion fusion reactions. Computer Physics Communications, 123(1-3):143–152.

Hagino, K. and Takigawa, N. (2012). Subbarrier fusion reactions and many-particle quantum tunneling. Progress of Theoretical Physics, 128(6):1061–1106.

Ichikawa, T. (2009). T. Ichikawa, K. Hagino, and A. Iwamoto, Phys. Rev. Lett. 103, 202701 (2009). Physical Review Letters, 103:202701.

Ichikawa, T. (2015). Systematic investigations of deep subbarrier fusion reactions using an adiabatic approach. Physical Review C, 92(6):064604.

Ichikawa, T., Hagino, K., and Iwamoto, A. (2007). Existence of a one-body barrier revealed in deep subbarrier fusion. Physical Review C, 75(5):057603.

Jiang, C. L., Back, B. B., Esbensen, H., et al. (2006). First evidence of fusion hindrance for a small Q-value system. Physics Letters B, 640(1-2):18–22.

Jiang, C. L., Esbensen, H., Rehm, et al. (2002). Unexpected behavior of heavy-ion fusion cross sections at extreme subbarrier energies. Physical Review Letters, 89(5):052701.

Jiang, C. L., Rehm, K. E., Esbensen, H., et al. (2005). Hindrance of heavy-ion fusion at extreme sub-barrier energies in open-shell colliding systems. Physical Review C, 71(4):044613.

Jiang, C. L., Rehm, K. E., Janssens, R., et al. (2004). Influence of nuclear structure on sub-barrier hindrance in Ni+Ni fusion. Physical Review Letters, 93(1):012701.

Jiang, C. L., Stefanini, A. M., Esbensen, H., et al. (2014). Fusion hindrance for a positive-Q-value system 24Mg+30Si. Physical Review Letters, 113(2):022701.

Khoa, D. T. and Satchler, G. R. (2000). Generalized folding model for elastic and inelastic nucleus–nucleus scattering using realistic density dependent nucleon–nucleon interaction. Nuclear Physics A, 668(1-4):3–41.

Kibedi, T. and Spear, R. H. (2002). Reduced electric-octupole transition probabilities, B(E3;01+!31-) -An update. Atomic Data and Nuclear Data Tables, 80(1):35–82.

Leigh, J., Dasgupta, M., Hinde, D., et al. (1995). Barrier distributions from the fusion of oxygen ions with 144,148,154Sm and 186W. Physical Review C, 52(6):3151.

Mi¸sicu, S¸. and Esbensen, H. (2006). Hindrance of heavy-ion fusion due to nuclear incompressibility. Physical Review Letters, 96(11):112701.

Mi¸sicu, S¸. and Esbensen, H. (2007). Signature of shallow potentials in deep sub-barrier fusion reactions. Physical Review C, 75(3):034606.

Montagnoli, G., Scarlassara, F., Mason, P., et al. (2010a). Sub-barrier fusion hindrance in medium-light systems. Nuclear Physics A, 834(1-4):159c–162c.

Montagnoli, G., Stefanini, A. M., Corradi, L., et al. (2010b). Sub-barrier fusion of 36S+64Ni and other medium-light systems. Physical Review C, 82(6):064609.

Montagnoli, G., Stefanini, A. M., Esbensen, H., et al. (2013). Effects of transfer channels on near-and sub-barrier fusion of 32S+48Ca. Physical Review C, 87(1):014611.

Montagnoli, G., Stefanini, A. M., Jiang, C. L., et al. (2012). Fusion of 40Ca+40Ca and other Ca+Ca systems near and below the barrier. Physical Review C, 85(2):024607.

Raman, S., Nestor J r, C. W., Kahane, S., et al. (1989). Predictions of B(E2;01+!21+) values for even-even nuclei.

Atomic Data and Nuclear Data Tables, 42(1):1–54.

Ramezani, M. and Ghodsi, O. N. (2014). Analysis of the fusion excitation functions for the 28Si+94Mo, 100 systems. Physical Review C, 89(3):034006.

Reisdorf, W. (1994). Heavy-ion reactions close to the Coulomb barrier. Journal of Physics G: Nuclear and Particle Physics, 20(9):1297.

Satchler, G. R. and Love, W. G. (1979). Folding model potentials from realistic interactions for heavy-ion scattering. Physics Reports, 55(3):183–254.

Steadman, S. G. and Rhoades-Brown, M. J. (1986). Subbarrier fusion reactions. Annual Review of Nuclear and Particle Science, 36(1):649–681.

Stefanini, A. M., Montagnoli, G., Corradi, L., et al. (2010). Fusion hindrance for 58Ni+54Fe. Physical Review C, 82(1):014614.

Stefanini, A. M., Montagnoli, G., Corradi, L., et al. (2015). Fusion of 48Ti+58Fe and 58Ni+54Fe below the Coulomb barrier. Physical Review C, 92(6):064607.

Stefanini, A. M., Montagnoli, G., Scarlassara, F., et al. (2013). Fusion of 60Ni+100Mo near and below the Coulomb barrier. The European Physical Journal A, 49(5):63.

Stokstad, R., Eisen, Y., Kaplanis, S., Pelte, D., Smilansky, U., and Tserruya, I. (1980). Fusion of 16O + 148,150,152,154Sm at sub-barrier energies. Physical Review C, 21(6):2427.

Winther, A. (1995). Dissipation, polarization and fluctuation in grazing heavy-ion collisions and the boundary to the chaotic regime. Nuclear Physics A, 594(2):203–245.