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H I G H L I G H T S

• Multi-group static 3-D neutron diffusion equation is solved using the finite element method.
• Generalized least squares FEM, through a variational approach is applied for solving the NDE.
• GELES code is developed based on the tetrahedral elements for an arbitrary shaped system.
• To validate the approach, output of GELES were compared against the DONJON computer code.
• Acceptable accuracy for the neutron multiplication factor and the power distribution was achieved.

A B S T R A C T

Numerical solution of the multi-group static forward and adjoint neutron diffusion equa-
tion (NDE) using the Finite Elements Method (FEM) is investigated in detail. A finite
element approach based on the generalized least squares method is applied for the spatial
discretization of the NDE in 3D-XYZ geometry. A computer code called GELES was also
developed based on the described methodology covering linear or quadratic tetrahedral
elements generated via the mesh generator for an arbitrary shaped system. A number
of test cases are also studied to validate the proposed approach. Moreover, to assess the
output dependency to the number of elements, a sensitivity analysis is carried out at the
end.
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1 Introduction

Various techniques e.g. finite difference, finite element,
boundary element or finite volume methods might be em-
ployed for the numerical solution of differential equations
arising in engineering problems. However, the Finite El-
ements Method (FEM) has proved its superiority for a
wide range of problems thanks to its firm theoretical basis
as well as fair applicability in industrial scale engineering
challenges.

The basic idea in the finite element method is to find
the solution to a complicated problem through replacing it
by a simpler one and to obtain an admissible approximate
solution rather than the exact. The first application of
FEM to the theory of neutron diffusion dates back to 1970s
(Kang and Hansen, 1973). The development in the appli-
cation of FEM to the Neutron diffusion equation (NDE)
has been described in the excellent treatise of (Lewis,
1981). Recently, several other applications of FEMs in-
cluding Thomas-Raviart-Schneider, hybrid, h-adaptivity,
response matrix, etc. to solve NDE has been introduced

(Cavdar and Ozgener, 2004; Hébert, 2008; Wang et al.,
2009).

The current study focuses on the application of the
generalized least squares FEM, through a variational ap-
proach for solving the multi-group forward/adjoint NDE
for reactor cores with 3D Cartesian geometry. As a consid-
erable privilege, internal incorporation of boundary condi-
tions makes the approach much easier than other methods.
The approach is utilized for the development of a com-
putational code, called GELES, able to solve multigroup
forward/adjoint NDE for systems with arbitrary geometry
in 3D space. Linear and quadratic tetrahedral finite ele-
ments generated by a mesh generator are supported by the
GELES. Indeed, a key advantage of tetrahedral elements
is their superiority in fair filling of objects with curved
boundaries or arbitrary oriented interfaces.

An outline of the remainder of this contribution is as
follows: In section 2, we briefly introduce the application
of generalized least squares method for a variational for-
mulation of NDE. Section 3 is devoted to the discretization
scheme used for maximizing the variational principle ob-
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tained through the generalized least squares method. A
number of benchmark problems solved through the pro-
posed methodology are presented in section 4. Outcome
sensitivity to the degrees of freedom is also investigated
in this section. A discussion on the outcome of the code
for benchmark problems in given in section 5, and we will
finally sum up the paper with a conclusion in section 6.

2 Generalized Least Squares Finite Ele-
ment Method

The generalized least squares method is a variational ap-
proach able to approximate the solution of NDE via min-
imizing the sum of the residual squares of the result. The
method was shown to provide a simple approach for estab-
lishing variational principles for the finite elements treat-
ment of diffusion theory (Ackroyd, 1986a). In this method,
a residual is defined as the difference between the actual
values of the neutron flux and current, and the values pre-
dicted. Consider Φ ≡ {φ,J} as the approach vector and
Φ0 ≡ {φ0,J0} as the actual results vector, the squares of
the errors vector would be:

H(φ,J) ≡ (Φ− Φ0)2 = {(φ− φ0)2, (J− J0)2} (1)

and, other vectors are defined as follows:

Φ′ ≡ {φ, 0}
Φ′0 ≡ {φ0, 0}
Φ̃ ≡ {φ,J0}

(2)

where

Φ̃− Φ0 = Φ′ − Φ′0. (3)

Also, the square of the error value can be defined as

(Φ′ − Φ′0)2 = (Φ′0)2 + (Φ′)2 − 2Φ′0.Φ
′. (4)

McConnell (McConnell, 1951) followed by Ackroyd
(Ackroyd, 1986b) have far previously explained the rela-
tionship between classical variational principles and the
scalar product in the Hilbert space. Scalar product of two
arbitrary vectors ϕ1 and ϕ2 (of the kind of those intro-
duced by Eq. (2)) for a multi-region body with volume V
in Hilbert space is defined as

ϕ1.ϕ2 =

∫

V

{(R1AR1) + (R2BR2)}dV

+

∫

∪(Si∩Sj)

{
W[φ1]r+0

r−0[φ2]r+0
r−0

+W ′[J1]r+0
r−0[J2]r+0

r−0
}

dS

+

∫

Sext

W[φ1 − α2n.J1][φ2 − α2n.J2]dS

(5)

Where, A and B are two self-adjoint and positive definite
operators, R1 and R2 are the residuals which provide a
measure of errors made by the function φ as approximate
solution of the NDE, W is an arbitrary weight coefficient,
Si∩Sj is the interface of regions i and j, and Sext denotes

the external boundary with the normal vector n. Sext can
be either a zero flux, reflective or extrapolated boundary
depending on the value of α. In Eq. (5) the first integral is
taken over the residual values (R1 and R2) obtained across
the volume due to approximation used for the NDE, the
second integral is the error value obtained from the neu-
tron flux and current discontinuities at interfaces that are
admissible. Finally, the third integral is related to the
mismatch for a perfect reflector at external boundaries.
The notation used for discontinuities is shown in Fig. 1
(Ackroyd, 1986b).

Figure 1: Discontinuities at interfaces of the regions (Ack-
royd, 1986b).

Therefore, as an example, for a two region geometry
shown in Fig. 2 each of the terms in Eq. (4) can be ob-
tained as a scalar product of two vectors according to Eq.
(5) as

(Φ′0)2 =

∫

V

[(Σaφ0AΣaφ0) + (D∇φ0BD∇φ0)]dV

+

∫

S2

Wφ20dS (6)

(Φ′)2 =

∫

V

[(ΣaφAΣaφ) + (D∇φBD∇φ)]dV

+

∫

S1

[φn.J]r+0
r−0 +

∫

S2

Wφ2dS (7)

Φ′0.Φ
′ =

∫

V

[(Σaφ0AΣaφ) + (D∇φ0BD∇φ)]dV

+

∫

S1

[φn.J0]r+0
r−0 +

∫

S2

Wφφ0dS (8)

where ∇ is the Nabla operator, and Σa and D are Macro-
scopic absorption XS and Diffusion constant, respectively.
In Eqs. (6-8), it was assumed that entry current value on
the outer boundary of the system is zero and also, neutron
flux values on the inner boundaries are continuous.

By use of the neutron balance equation in the presence
of a neutron source (S), absorption rate is as follows:

Σa(r)φ0(r) = S(r)−∇.J0 (9)

According to the Fick’s law, Eq. (8) can be written as
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Figure 2: A sample system with two regions.

Φ′0.Φ
′ =

∫

V

[(SAΣaφ) + (∇.J0AΣaφ)− (J0BD∇φ)]dV

+

∫

S1

[φn.J0]r+0
r−0dS +

∫

S2

Wφφ0dS

(10)
It is supposed that AΣa = BD = 1 and by the prop-

erties of operator ∇ plus the divergence theorem we have

∇.(J0φ) = (∇.J0)φ+ J0.∇φ (11)∫

V

∇.(J0φ)dV =

∮

S
φ(J0.n)dS. (12)

Hence, Eq. (10) becomes

Φ′0.Φ
′ =

∫

V

SφdV +

∫

S1

[φ(J0.n)]r+0
r−0dS

+

∫

S2

φ(Wφ0 − J0.n)dS.

(13)

For the bare boundary condition there would be

φ(rs)− α2n.J(rs) = 0, α2 = 2. (14)

If W =
1

α2
and flux values on the inner boundaries are

assumed continuous, Eq. (13) is turned to

Φ′0.Φ
′ =

∫

V

SφdV. (15)

Using a similar procedure for Eq. (7) we may have

(Φ′)2 =

∫

V

[(φΣaφ) + (∇φ.D∇φ)]dV +
1

α2

∫

S2

φ2dS.

(16)

Now, a variational principle, K ′[φ] can be defined from
the combination of Eqs. (15) and (16) as

K ′[ϕ] ≡2Φ′0.Φ
′ − (Φ′)2

=2

∫

V

(Sφ)dV −
∫

V

[(φΣaφ) + (∇φ.D∇φ)]dV

− 1

α2

∫

S2

φ2dS.

(17)
Hence, Eq. (4) can now be rewritten as

(Φ′ − Φ′0)2 = (Φ′0)2 −K ′[φ]. (18)

Non-zero lhs of Eq. (18) reveals that

K ′[ϕ] ≤ (Φ′0)2 (19)

As a consequence, maximizing K ′[ϕ] principle defined by
Eq. (17) minimizes the error. Now, K ′[ϕ] value is a max-
imum variational principle to solve the NDE by using of
the generalized least squares method. As seen it is not re-
quired to apply the boundary conditions since these con-
ditions have been exerted to extract the principle, previ-
ously. Finally, the variational principle is maximized using
the FEM approximation.

3 Discretization of the neutron diffusion
equation

3.1 Forward neutron diffusion equation

In the absence of external neutron source, the multi-group
NDE is written as (Lamarsh, 1975):

−Dg∇2φg(r)+Σr,gφg(r) =
χg

keff

G∑

g′=1

νΣf,g′φg′(r)

+
∑

g′ 6=g

Σg′→gφg′(r), g = 1, 2, ..., G

(20)

where φg(r) is the neutron flux in energy group g. There
are Dg diffusion constant, Σr,g macroscopic removal XS,
χg neutron spectrum and Σf,g′ macroscopic fission XS in
energy group g′. ν denotes the fission neutron yield. Also,
Σg′→g is macroscopic scattering XS from energy group
g′ to g and keff is neutron multiplication factor. Eq.
(20) is a linear partial differential equation which may
be solved by different numerical methods. All of these
methods transform the differential equation into a sys-
tem of algebraic equations. Here, a FEM based on the
generalized least squares method is exploited to discretize
the aforementioned NDE. To start the discretization, the
whole system is divided into the tetrahedral elements as
shown in Fig. 3. The simplest solid element is four node
tetrahedral. This is also called the linear tetrahedral since
its shape functions are linear polynomials. Whereas, its
quadratic approximation has ten node that is tetrahedral
element including mid-side nodes. Geometry discretiza-
tion could be carried out using various mesh generators
such as Gambit, ABAQUS, ANSYS, and TRELIS etc.

Figure 3: The linear and quadratic tetrahedral elements.
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Linear or quadratic approximation of the neutron flux
inside each finite element could be considered as:

φ(e)(x, y, z) ∼=
P∑

n=1

N (e)
n (x, y, z)ψ(e)

n = N(e)T.Ψ(e);

P =

{
4 linear tetrahedron

10 quadratic tetrahedron

(21)

where N
(e)
n is the shape function associated with node n

of the element e, and ψ
(e)
n denotes the flux value over that

node. Also, N(e) and Ψ(e) are the corresponding vectors

encapsulating N
(e)
n and ψ

(e)
n , respectively.

For the linear approximation we may have (Zienkiewicz
and Taylor, 2005):

N (e)
n (x, y, z) = L(e)

n (x, y, z)

=
an + bnx+ cny + dnz

6V
(e)
n

; n = 1, ..., 4
(22)

Where L
(e)
n is a local coordinate with the following coeffi-

cients:

a1 =

∣∣∣∣∣∣

x2 y2 z2
x3 y3 z3
x4 y4 z4

∣∣∣∣∣∣
; b1 = −

∣∣∣∣∣∣

1 y2 z2
1 y3 z3
1 y4 z4

∣∣∣∣∣∣
;

c1 = −

∣∣∣∣∣∣

x2 1 z2
x3 1 z3
x4 1 z4

∣∣∣∣∣∣
; d1 = −

∣∣∣∣∣∣

x2 y2 1
x3 y3 1
x4 y4 1

∣∣∣∣∣∣
.

(23)

Other constants (n = 2, 3, 4) are defined through clock-
wise cyclic interchange. Also, the element volume in Eq.
(22) is calculated via:

6V (e) =

∣∣∣∣∣∣∣∣

1 x1 y1 z1
1 x2 y2 z2
1 x3 y3 z3
1 x4 y4 z4

∣∣∣∣∣∣∣∣
. (24)

For the quadratic approximation, shape functions are de-
fined as:

N (e)
n (x, y, z) =
{

(2L
(e)
n − 1)L

(e)
n n = 1, ..., 4 (corner nodes)

4L
(e)
i L

(e)
j rn = (ri + rj)/2 (mid− edge nodes)

(25)
Shape functions of an element satisfy the following crite-
rion at all points inside the element:

N∑

n=1

N (e)
n (x, y, z) = 1. (26)

In the next, flux approximation is situated in the sentences
of the variational principle for each element as follows:

∫

Ve

(Sφ)dV =

∫

Ve

(SeN
(e)T.Ψ(e))dV

=[

∫

Ve

SeN
(e)TdV ].Ψ(e) = I

(e)
1 .Ψ(e)

(27)

∫

Ve

(φΣaφ)dV =Ψ(e)T.[

∫

Ve

N(e)Σ(e)
a N(e)TdV ].Ψ(e)

=Ψ(e)T.I
(e)
2 .Ψ(e)

(28)

∫

Ve

(∇φ.D∇φ)dV =Ψ(e)T.[

∫

Ve

∇N(e)D(e)∇N(e)TdV ].Ψ(e)

=Ψ(e)T.I
(e)
3 .Ψ(e)

(29)

1

α2

∫

Sb

φ2dS =Ψ(e)T.[

∫

∂Ve

λN(e).N(e)TdS].Ψ(e)
(30)

In Eq. (30), λ is a constant that for perfect reflective
boundary condition is set to zero and at vacuum bound-
aries is equivalent to 0.5, according to Eq. (14).

Finally, all elements are assembled to form a mono-
lithic system of linear equations for the overall system:

K ′[φ]=

Np⋃

e=1

(2I
(e)
1 .Ψ(e) −Ψ(e)T.(I

(e)
2 + I

(e)
3 + I

(e)
4 ).Ψ(e))

=2ΨT.S−ΨT.M.Ψ
(31)

where
⋃

is a symbol for the assembly procedure of Np

elements, S and M are the global source and coefficient
matrices, and Ψ is the global neutron flux vector. Max-
imizing Eq. (31) through vanishing the first variation of
K ′[φ] with respect to Ψ results in the following linear sys-
tem of equations:

M.Ψ = S. (32)

In case of fission source in the system, we have

S =
1

keff
νΣ

(e)
f φ (33)

Here, Eq. (27) is rewritten as:

∫

Ve

(Sφ)dV =
1

keff
νΣ

(e)
f

∫

Ve

ϕ2dV

= Ψ(e)T.[νΣ
(e)
f

∫

Ve

N(e).N(e)TdV ].Ψ(e)

= Ψ(e)T.I
(e)
f .Ψ(e)

(34)

Now, we have a system of equations which is an eigen-
value problem solved by the power iteration method. For
this case, S vector is obtained as

S = If .Ψ0 (35)

where Ψ0 is an initial guess for the flux vector to start the
iteration procedure. Eventually, for a multi-group system
of equations, the neutron multiplication factor and flux
are calculated in each of energy group by using an initial
guess for the group flux.
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3.2 Adjoint neutron diffusion equation

It should be noted that the adjoint operator would be
the transpose of the direct operator (Bell and Glasstone,
1970; Duderstadt and Hamilton, 1976). Therefore, the
multigroup adjoint NDE can be stated as

−∇.(Dg(r)∇φ†g(r)) + Σr,g(r)φ†g(r) =
νΣf,g(r)

keff

G∑

g′=1

χg′φ†g′(r)

+
∑

g′ 6=g

Σg→g′(r)φ†g′(r); g = 1, 2, ..., G

(36)
where φ†g is the group adjoint function fallaciously (but
commonly) referred to as flux. Similarities between Eqs.
(36) and (20) reveals that the same algorithm used to solve
the forward NDE can also be applied for the adjoint coun-
terpart, with minor changes in the role of some of com-
ponents, e.g. exchange between νΣf,g and χg′ or energy
levels in Σg→g′(r).

4 Numerical examples

Based on the proposed methodology a computer code,
GELES, was developed to solve multigroup forward and
adjoint NDE for arbitrary shaped 3D systems. To validate
the method, two benchmark problems are studied in this
section.

4.1 The IAEA-3D benchmark

The IAEA-3D benchmark (Center, 1977) describes a PWR
with typical cross sections for the fuel assemblies and
partly inserted control rods. The active core height is
340 cm, covered with axial and radial reflectors. The ge-
ometry of the IAEA-3D reactor with 15 assemblies across
the core diameter is shown in Fig. 4, and material con-
stants are listed in Table 1. The boundary conditions of
the reactor core comprise of no incoming current for ex-
ternal boundaries and perfect reflective for the symmetry
line boundaries.

Fig. 5 displays a discretized model of the IAEA-3D
reactor core using mesh generator. Because of symmetry,
only 1/8 of the reactor is needed to be simulated. Results
of the calculations using the GELES code is reflected in
Table 2. Relative percent error (RPE) in the following
tables and figures is defined as

RPE =
calculated value− reference value

reference value
× 100 (37)

Note that the calculated adjoint multiplication factor
was the same as its forward counterpart, as anticipated,
hence not repeated in a different table. Finally, calculated
power distribution is compared with the reference data in
Fig. 6.

Figures 7 and 8 show the calculated fast and thermal
neutron flux distributions using GELES computer code. It
should be noted that the calculated values of the flux are

normalized to the unit neutron production rate as follows:

‖φg(r)‖NPR =
φg(r)

NPR
=

φg(r)
∑G

g

∑E
e

∫
Ve

νΣe
f,gφ

e
g(r)dV

∼= φg(r)
∑G

g

∑E
e (νΣe

f,gI
eT
1 .φeg)

(38)

Figure 4: Configuration of the IAEA-3D benchmark problem.

Figure 5: Meshed view of the IAEA-3D reactor core (1/8
symmetry).

Figure 6: Power distribution in the IAEA-3D reactor core
using the GELES computer code.
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Table 1: Material cross sections for the IAEA-3D benchmark problem.

Mat. type g Dg(cm) Σr
g (cm−1) Σs

1→g (cm−1) νΣf
g (cm−1)

1
1 1.500 0.030 0 0
2 0.400 0.085 0.02 0.135

2
1 1.500 0.030 0 0
2 0.400 0.130 0.02 0.135

3
1 1.500 0.030 0 0
2 0.400 0.080 0.02 0.135

4
1 2.000 0.040 0 0
2 0.300 0.010 0.04 0

5
1 2.000 0.040 0 0
2 0.300 0.055 0.04 0

Table 2: The calculated neutron multiplication factor for the IAEA-3D benchmark.

Number of elements App. order
keff RPE*

GELES-3D DONJON4 GELES-3D DONJON4

36,287
Linear 1.03064 1.02884 0.1565 -0.0185

Quadratic 1.02923 1.02902 0.0194 -0.0010

59,248
Linear 1.03037 1.02892 0.1302 -0.0107

Quadratic 1.02918 1.02902 0.0146 -0.0010

92,008
Linear 1.02961 1.02897 0.0564 -0.0058

Quadratic 1.02910 1.02903 0.0068 0.0000

* Relative Percent Error with respect to the reference eigenvalue: keff=1.02903 (Center, 1977).

Figure 7: Fast neutron flux distribution in the IAEA-3D re-
actor core using the GELES computer code.

4.2 The Schulz PWR benchmark

The 3D Schulz PWR benchmark (Kolev et al., 1999;
Schulz, 1996) consists of a VVER-1000 core in the steady
state. Hexagonal assemblies are homogeneous in two en-
ergy groups and there are seven material compositions in-
cluding four enrichments, burnable absorber, control rods
and reflector. The core height is 355 cm, covered with ax-
ial and radial reflectors and the assembly lattice pitch is
24.1 cm. Fig. 9 displays the 30 degrees sector of the core
configuration. Also, Table 3 represents the material cross
sections for the problem. Results for Schulz-3D reactor
are given in Table 4 and Fig. 10 .

Figure 8: Thermal neutron flux distribution in the IAEA-3D
reactor core using the GELES computer code.

Figures 11 and 12 show the calculated fast and thermal
normalized neutron flux distributions using GELES com-
puter code. Also, Figs. 13 and 14 display the calculated
fast and thermal normalized adjoint flux distributions us-
ing GELES computer code. It is worth noting that the
calculated adjoint multiplication factor was the same as
its forward counterpart.

It should be noted that the calculated neutron mul-
tiplication factors by the DONJON4 code (Hébert et al.,
2013) given in Tables 2 and 4 was calculated using struc-
tural elements and DUAL selective method which uses a
mixed-dual finite element discretization. If the geometry
is hexagonal, a Thomas-Raviart-Schneider method is used.
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Figure 9: Configuration of Schulz-3D benchmark problem.

Figure 10: Power distribution in the Schulz-3D reactor core
using GELES computer code.

Figure 11: Fast neutron flux distribution in the Schulz-3D
reactor core using GELES computer code.

Figure 12: Thermal neutron flux distribution in the Schulz-
3D reactor core using GELES computer code.

Figure 13: Fast adjoint flux distribution in the Schulz-3D
reactor core using GELES computer code.

Figure 14: Thermal adjoint flux distribution in the Schulz-3D
reactor core using GELES computer code.

5 Discussion

As shown in Tables 2 and 4, differences between the calcu-
lated neutron/adjoint multiplication factor and reference
value decreases as the number of elements is increased. For
the number of 92,008 tetrahedral elements in the IAEA-3D
reactor core, the calculated RPE from GELES-3D-T1 (lin-
ear), GELES-3D-T2 (quadratic) and DONJON computer
codes are 0.0564, 0.0068 and 0.0000, respectively. Also, for
the number of 70,950 elements in Schulz-3D reactor core,
the calculated RPE from GELES-3D-T1, GELES-3D-T2
and DONJON computer codes are -0.0181, 0.0067 and -
0.0029, respectively. Also, the calculated RPEs for power
distribution in benchmark problems are in the range of
other same reported results (Figs. 6 and 10). Results ob-
tained from the mentioned computer codes have a good
agreement with the reference value. The advantage of
tetrahedral finite elements over other element types is the
suitable accommodation of elements in the boundary lay-
ers or regions with high flux gradient. This leads to desired
accuracy with low computational cost.

6 Conclusions

In the current study, GELES computer code was devel-
oped for multi-group forward/adjoint neutron diffusion
calculation based on the generalized least squares finite
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Table 3: The material types cross sections for Schulz-3D benchmark problem.

Mat. type g Dg(cm) Σr
g (cm−1) Σs

1→g (cm−1) νΣf
g (cm−1)

1
1 1.37548 0.024135 0 0.0047663
2 0.38333 0.066002 0.015946 0.083980

2
1 1.40950 0.024769 0 0.004702
2 0.38756 0.074988 0.014346 0.084128

3
1 1.37067 0.023800 0 0.0058437
2 0.38028 0.080442 0.015172 0.11468

4
1 1.39447 0.024069 0 0.0061632
2 0.38549 0.094773 0.013903 0.12598

5
1 1.36938 0.023697 0 0.0063396
2 0.37877 0.087681 0.014855 0.12998

7
1 1.36966 0.023721 0 0.0062284
2 0.37911 0.08585 0.014927 0.12612

R
1 1.0 0.040644 0 0
2 0.33333 0.052785 0.024875 0

Table 4: The calculated neutron multiplication factor for Schulz-3D.

Number of elements App. order
keff RPE*

GELES-3D DONJON4 GELES-3D DONJON4

34,131
Linear 1.04856

1.04948
-0.0924

-0.0048
Quadratic 1.04967 0.0133

62,500
Linear 1.04922

1.04949
-0.0295

-0.0038
Quadratic 1.04961 0.0076

70,950
Linear 1.04934

1.04950
-0.0181

-0.0029
Quadratic 1.04960 0.0067

* The reference eigenvalue: keff=1.04953 (Kolev et al., 1999).

elements method. The calculations were performed us-
ing tetrahedral finite elements with linear and quadratic
approximations for arbitrary shaped 3D geometries. To
validate the approach output of GELES were compared
against those of DONJON computer code as well as refer-
ence data. Acceptable accuracy for the neutron multipli-
cation factor and the power distribution was achieved for
all test cases. It is concluded that the GELES code may
be used as a reliable and powerful tool for static analysis
of 3D multiplying systems.
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