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H I G H L I G H T S

• The proposed method can compute all types of surface areas and volumes for complex geometries.
• Reasonable accuracy and precision were obtained in a relatively short computational time.
• The presented modules can be used effectively in any Monte Carlo-based code that employs CG geometry modelling.

A B S T R A C T

Abstract: The estimation of flux in radiation transport Monte Carlo problems needs to
calculate the volumes and surface areas of the geometric regions. The particle flux is
often estimated as the track length per unit volume or the number of particles crossing a
surface per unit area in Monte Carlo transport problems. Various representations such as
constructive solid geometry (CSG), boundary representation (B-Rep), and combinatorial
geometry (CG) are proposed in the literature for geometry modeling and calculation of
surface area and volume. MCNP series and OpenMC as Monte Carlo particle transport
codes utilize CG modeling and are not able to calculate surface area as well as volume
for non-rotationally symmetric or non-polyhedral cells. In this work, a comprehensive
approach based on the Cauchy-Crofton formula using the Monte Carlo method has been
implemented to the radiation transport codes as an extra module for computing surface
area and volume of complex geometries. We used a random sampling procedure to create
the required probe lines and points in the computational approach. The results show that
this method can accurately compute surface areas and volumes of complex geometries
with a relative error of less than 0.1% and a short computation time of a few seconds,
which is not achievable with the cuurent MCNP and OpenMC modules.
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1 Introduction

Objects’ geometric properties, such as length, area, and
volume, are significant quantities that need to be fre-
quently calculated in many biological, medical, and indus-
trial applications (Timmer and Stern, 1980). For instance,
the cortical surface area can be concerned with functional
capacities in the analysis of the cortex in MR images (Win-
dreich et al., 2003; Zeng et al., 1999). Furthermore, the
peritoneal surface area is considered an important factor in
dialysis effectiveness in hemodialysis (Breton et al., 2008).
3D shape recognition and matching which focus on the
area of geometric measurements can also be another class
of applications (Klette and Rosenfeld, 2004). On the other
hand, the radiation flux in Monte Carlo transport prob-
lems is often estimated as the track length per unit volume

or the number of particles crossing a surface per unit area.
Therefore, knowing the volumes and surface areas of the
geometric regions in a Monte Carlo problem is essential
(Hendricks, 1980). Knowing volumes is useful in calculat-
ing the masses and densities of cells and thus in calculating
volumetric or mass heating. Moreover, the calculation of
geometrical mass is frequently a good check on the accu-
racy of the geometry setup when the mass is known by
other means.

There are different representations with various ap-
proaches currently in use for calculating the area, volume,
and other measures of geometric objects (Breton et al.,
2008; Castro and Sbert, 2000; Dorst and Smeulders, 1987;
Flin et al., 2005; Gärtner, 1999; Klette and Sun, 2001;
Sarraga, 1982; Fang et al., 2009). One approach to calcu-
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lating volume properties reduces them to the calculation
of appropriate surface integrals by means of the diver-
gence theorem (Klette and Sun, 2001). Thus, calculating
integrals over the surface of the object can be applied to
compute other mass properties of interest.

Another approach, used in GMSolid, is described by
Sarraga as an alternative means of evaluation (Sarraga,
1982). In this method, the surface of each primitive is di-
vided into small elements, whose sizes are chosen to meet
a user-defined density. These elements are topologically
rectangular and are bound by parameter lines. Each ele-
ment is then classified as lying inside, outside, or on the
model by means of point membership classification, using
a random test point belonging to the element. The area
of each element classified as on the surface of the solid is
computed analytically using the usual formula from dif-
ferential geometry, which is represented by Eq. (1):

A =

∫ ν2

ν1

∫ u2

u1

√
(ru.ru)(rν .rν) − (ru.rν)2 dudν (1)

where the parameter lines are expressed by u = u1, u = u2
and ν = ν1; ν = ν2. These areas are then summed to give
an estimate for the surface area of the whole object. In
another class of approaches, which is based on ray cast-
ing, the area of a surface can be approximated as the sum
of the areas of rectangular strips (Roth, 1982). Each sur-
face is covered by a bounding rectangle, which is divided
into strips. Within each strip, a ray is produced across
the rectangle. Then, the location of the entrance and exit
through the surface is recorded. An approximation for
the area of the surface is given by summing the lengths
of the segments inside the surface which is multiplied by
the widths of each strip. In addition, a regular grid of rays
can be shot through the object and then recorded as entry
and exit points. Adjacent piercing points are connected
to form triangles, and the sum of the areas of these trian-
gles approximates the surface area of the object (Prisant,
1996). Clearly, this is not accurate where the rays are
almost tangential to the object.

In addition, boundary representation (B-Rep) model-
ing can be used to represent the geometries as another
approach. This method allows producing a polygonal tes-
sellation of the surface of the model (Lorensen and Cline,
1998). Summing the areas of all polygons in the tessella-
tion can obtain an approximation of the surface area.

The probabilistic method of quasi-Monte Carlo area
(QMCA) was presented by Liu for computing the surface
area of a complicated geometry as the point-sampled sur-
faces (Liu et al., 2006) in CSG modeling. It is based on the
Cauchy-Crofton formula (Do Carmo, 2016) and performs
the area estimation by counting the number of intersection
points between the point cloud and a set of uniformly dis-
tributed lines generated with low discrepancy sequences.
In essence, the Cauchy-Crofton formula transforms a prob-
lem of estimating the surface area into a problem of count-
ing the intersection points. The algorithm of a line and
point sets intersecting (LPSI) was applied to determine
all intersection points between the point set and the lines,
which is based on a clustering technique. In some sense,
the LPSI algorithm can be considered an extension of the

ray tracing routine proposed by Schaufler et al. (Schaufler
and Jensen, 2000). As reported in (Liu et al., 2006), the
results of point classification in this algorithm are depen-
dent on the orientation of the normal vector, which may
lead to large approximation errors. Therefore, convert-
ing geometry to point-sampled surfaces is an extra stage.
In addition, using this method will inherently lead to a
geometric approximation.

The estimation of the particle flux by Monte Carlo
codes, such as MCNP or OpenMC, requires in advance
the calculation of volumes and surface areas of the ge-
ometric regions of interest (Brown et al., 2002; Romano
et al., 2015; Romano and Forget, 2013). These are general-
purpose Monte Carlo codes, that use combinatorial ge-
ometry modeling (CG). Calculating volumes and surface
areas in modern Monte Carlo transport codes is difficult
because MCNP as well as OpenMC allows the construc-
tion of cells from unions and/or intersections of regions
defined by an arbitrary combination of second-degree sur-
faces, toroidal fourth-degree surfaces, or both. These sur-
faces can have different orientations or be segmented for
tallying purposes. Also, the cells can be constructed from
quadrilateral or hexagonal lattices or can be embedded
in repeated structures universes. Although such general-
ity greatly increases the flexibility of MCNP, computing
cell volumes, and surface areas understandably requires
increasingly elaborate computational methods.

MCNP cannot calculate the volumes and areas of
asymmetric, non-polyhedral, or infinite cells and in these
cases, the volume and area calculation can fail because of
round-off errors (Hendricks, 1980; Brown et al., 2002; Ro-
mano et al., 2015; Brown et al., 2003). However, MCNP
uses a stochastic procedure that can estimate area and vol-
ume using the ray-tracing method (Goorley et al., 2014).
This procedure requires changing the input and executing
the code separately. The cell flux tally and surface flux
tally are inversely proportional to cell volume and area,
respectively. The input for the main run will then con-
tain the calculated area and volume. A thorough Monte
Carlo method has been added as a module to the MCNP
series to efficiently compute the surface area and volume
of complex geometries in CG modeling without the need
for repeated executions of the MCNP code. This mod-
ule accurately computes the surface area and volume of
geometries within a reasonable computation time.

2 Materials and Methods

2.1 Area calculation

To calculate surface area in this approach, inspired by the
QMCA method, we implemented a similar Monte Carlo
method in the CG representation. A sphere surrounding
is considered on the desired geometry. A sufficient num-
ber of uniformly distributed lines are defined to cross the
sphere and geometry surfaces randomly. Since boundary
surface equations are known in the CG method, unlike the
LPSI algorithm in the QMCA method, no extra approxi-
mation is performed in calculating the surface area due to
converting geometry to point-sampled surfaces. Surface
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area estimation can be carried out by the Monte Carlo
method according to Eq. (2) (Liu et al., 2006):

S ≈ n

n1
S1 (2)

where S1 is the surface of a circumscribing sphere, S is
the surface of the desired geometry, n1 is the total num-
ber of intersection points concerning probe lines crossing
the sphere and n is the total number of intersection points
concerning probe lines crossing the desired geometry.

For simple geometries, that is those defined by primi-
tive surfaces only and not involving further combinatorial
operations, finding the number of intersection points on
the surfaces of the desired geometry is simple. In com-
plex geometries due to the union and intersection of multi-
volumes, a failure may be revealed to compute the surface
area. The source of error in this case is due to consid-
ering those intersection points, corresponding to surfaces
between unified cells, which are not included as the surface
border points.

To resolve this problem, at the intersection point of
probe lines with surfaces, two adjacent points around each
intersection point are selected as shown in Fig. 1. If all
of these three points are located in the same cell, they
correspond to surfaces between unified cells and are not
considered in the computational approach. Conversely,
the intersection point will be considered as a surface bor-
der point if one of the two adjacent points is located in a
different cell.

An illustrative example of the surface border point se-
lection method is depicted in Fig. 1. As is shown, to
distinguish the intersection points on the surface “S” as
the border points or not, the two probe lines A and B
are crossed with that surface. Based on the proposed
approach both adjacent points in crossing point (a) are
located in the same cell. Therefore, this point is not con-
sidered in the surface area calculation for cell 1. On the
other hand, as one of the adjacent points in crossing point
(b) is out of cell 1, consequently point (b) is considered as
a border point in the calculation.

The above-mentioned approach was implemented as
an extra module in MCNP code to estimate the surface
areas that could not be computed by using current ver-
sions of the code. The algorithm of the approach is shown
in Fig. 2. Where m is the number of intersection points
on the investigated surface per each line and n is the to-
tal trial number of probe lines sampling. For each cell in
the algorithm, the parameters associated with the limiting
planes are loaded. According to the specified procedure,
verifying if these points are part of the cell is conducted.
Finally, the surface area is computed using Eq. (2). This
approach has been implemented as a Monte Carlo Surface
Calculation (MCSC) module in MCNP.

Due to the probabilistic nature of this approach, the
precision of the calculated area increases with probe line
sampling. It should be noted that the determination of the
intersection point belonging to the cell has been carried
out by the CHKCEL subroutine in MCNP (Hendricks,
1980).

Figure 1: Surface border points selection approach by using
the Monte Carlo method.

Figure 2: The implementation approach for estimating the
surface area in MCNP.

2.2 Volume calculation

To calculate the volume of a desired cell in this approach,
the Pi estimation idea by using the Monte Carlo method
has been utilized (McCloskey and Braithwaite, 1995; Kar-
garan et al., 2016). Then, the sampling of random points
is considered within a cube surrounding the desired cell.
The volume of the desired cell is then calculated according
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Figure 3: Sensitivity analysis for estimating the area of four objects with a constant surface area.

Figure 4: Sensitivity analysis for estimating the volume of four objects with a constant volume.

to Eq. (3):

Desired volume

Cube volume
=

Nhit

Ntotal
(3)

where Ntotal is the total number of sampling points in the
inscribed cub and Nhit is the total number of those sam-
pling points that fall within the desired geometry. Similar
to the MCSC method precision of the calculated volume
increases with point sampling. This approach has been im-
plemented as a Monte Carlo Volume Calculation (MCVC)
module in MCNP. As illustrated in section 2.1, the defini-
tion of a point belonging to the cell has been done by the
CHKCEL subroutine.

3 Results and Discussion

The algorithms presented here are developed and com-
piled in the FORTRAN programming language. All the
simulations were run on a PC with Intel Core i7-4790 3.60
GHz CPU and 16 GB RAM.

To evaluate the performance of surface area estimation,
we considered four simple objects (sphere, cube, cylinder,
and cone) with the same surface area of 5026.55 m2 as

illustrative examples. Figure 3 shows the curves of sensi-
tivity analysis corresponding to the required probe lines
for estimating the area of the objects, where the number
of lines is specified from 10 to 1,000,000. It can be seen
that the presented method leads to reaching the real val-
ues with small approximation errors with an increasing
number of lines. When the number of lines was equal to
30,000 the relative error was approximately 1%. To obtain
a relative error of less than 0.5%, the number of random
probe lines should be 200,000 at least.

In addition, the performance of the presented method
was evaluated to estimate the volume by testing simple
objects with the same volume of 5026.55 m3. The curves
of sensitivity analysis corresponding to the required points
for estimating the volume of four simple objects are shown
in Fig. 4. As indicated, increasing the number of points
can also lead to small approximation errors. The relative
error of 1% was achieved when the number of points was
equal to 35,000. Moreover, the number of random points
above 150,000 caused a relative error of less than 0.5%.

The mean and standard deviation for a population
of 200 times volume and surface area calculations, using
1,000,000 points and probe lines for all of the geometrical
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Figure 5: The surface area computation time as a function of the number of probe lines.

Figure 6: The volume computation time as a function of the number of sampling points.

Table 1: Surface area calculations using the MCSC method in simple geometries.

Geometric Analytical calculation presented module calculation
object (cm2) Average (cm2) STD. Relative error (%) Time (s)

Cone 5026.548 5019.837 10.4228 0.13352 1.081765
Cube 5026.548 5026.582 4.575936 0.00068 3.429615

Sphere 5026.548 5026.12 8.858824 0.00852 0.525745
Cylinder 5026.548 5026.5 7.623056 0.00095 1.6511

Table 2: Volume calculations using the MCVC method in simple geometries.

Geometric Analytical calculation presented module calculation
object (cm2) Average (cm2) STD. Relative error (%) Time (s)

Cone 5026.548 5026.4061 8.162198 0.00282 0.208925
Cube 5026.548 5026.5332 2.81182 0.00030 0.342925

Sphere 5026.548 5026.5172 5.162839 0.00061 0.125865
Cylinder 5026.548 5026.5177 4.479972 0.00060 0.216425

samples, are presented in Table. 1 and Table. 2 respec-
tively. The results indicate that the computation time for
both MCSC and MCVC methods rises in direct proportion
to the increase in bounding surfaces. The sphere with one
surface has the shortest computation time, whereas the
cube with 6 bounding surfaces has the longest. The cube
has the lowest relative inaccuracy, whereas the cone has
the largest.

The computation time versus the number of probe lines

and points corresponding to surface area and volume es-
timation are shown in Figs. 5 and 6, respectively. The
results indicate that the computation time increases with
the number of lines and points linearly. As depicted in
Fig. 5, the computation time is proportional to the degree
and the number of constitutive geometrical surfaces. The
computation time for cylinder volume calculation, which
has two first-degree and a second-degree surface is about
1.75 times more than that of sphere volume. This time
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Figure 7: The relative error of volume estimation results versus the number of points.

Figure 8: The relative error of surface area estimation results versus the number of probe lines.

Table 3: The detailed analysis concerned with the surface area calculation of sample A.

Surface
Analytical calculation Presented module calculation

of area (cm2) Average STD Relative error (%)

A1 5 5.001639 0.015463 0.032776
A2 5 5.001807 0.015629 0.036146
A3 5 4.99905 0.01644 0.018995
A4 5 5.000589 0.015244 0.011773
A5 1.6438 1.644069 0.008557 0.016358
A6 4 3.998851 0.014709 0.028716
A7 9.4248 9.423864 0.029928 0.009931

total 35.0686 35.06987 0.046597 0.00362

for cone and cube volumes is approximately 1.4 and 2.8
times more than that of the sphere. The maximum com-
putation time is related to the cube geometrical volume
which is composed of the six first-degree surfaces and is
about 2.8 times of sphere.

To the presented algorithm, the computation time for
estimating the surface area has generally revealed a con-
siderable change as compared to the volume calculation
for the same geometry.

In the surface area calculation, the elapsed time to
compute the intersection point of the probe line with each
surface has been considered as well as the degree and the
number of constitutive geometrical surfaces. Therefore,

the number of geometrical surfaces appears as the most
significant factor determining the time of calculations. As
shown in Fig. 6, the computation time for the geometry of
a sphere, cone, cylinder, and cube using 1,000,000 random
probe lines is 0.441, 1, 1.49, and 3.52 s, respectively.

The relative errors between the real value and the re-
sults of our approach for estimating of surface area and
volume are shown in Figs. 7 and 8, respectively.

It can be seen that the errors decreased with the num-
ber of sampling points. The relative error was about 10%
at random points of 1,000 and approximately less than
0.07% at 1,000,000 points in volume calculations. In addi-
tion, at 1,000,000 sampling points, the maximum relative
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Figure 9: The two samples with complex geometries for validating test.

Table 4: The detailed analysis concerned with the surface areas calculation of sample B.

Surface
Analytical calculation Presented module calculation

of area (cm2) Average STD Relative error (%)

B1 189.7526 189.9655 0.583675 0.112181
B2 88.21613 88.21554 0.367514 0.000666
B3 62.07802 62.20824 0.410714 0.209769
B4 111.0721 111.0467 0.424418 0.022826

total 451.1189 451.436 0.908052 0.070302

Table 5: The detailed analysis concerned with the volume calculations of each sample.

Sample Analytical calculation Presented module calculation
object of volume (cm3) Average STD Max. Relative error (%)

A 6.4657 6.465939 0.008431 0.134
B 531.1295 531.0816 1.027074 0.202

error is about 0.16% corresponding to the cone geometry
as well as a minimum relative error of 0.05% for the cube
geometry. Therefore, according to the results, the volume
calculation accuracy will be improved by decreasing the
degree of surface curvature.

Furthermore, the relative error in surface area calcula-
tions was about 10% at random probe lines of 1,000 and
approximately less than 0.1% at 1,000,000 lines. The max-
imum relative error is about 0.34% corresponding to the
cone geometry as well as a minimum relative error of 0.09%
for the cube geometry. Therefore, according to the results,
the area calculation accuracy will be improved by decreas-
ing the degree of surface curvature (from second-degree to
first-degree surfaces) for the same number of probe lines.

Here, the two samples with complex geometries in
which their volumes and surface areas cannot be calcu-
lated by MCNP code were considered as shown in Fig.
9. However, they can be calculated analytically, the de-
signed Monte Carlo approach was used as an extra module
to calculate the volumes and surface areas. The detailed
analysis of the mean values, standard deviations, and rel-
ative errors corresponding to the surface area calculation
of each sample (A and B) are summarized in Tables 3 and
4.

The results show that the maximum relative errors
between the mean value and analytical calculation were
about 0.036% and 0.209% corresponding to surfaces of A2
and B3 respectively. However, the relative errors for the
total surfaces of objects A and B were about 0.0036% and
0.07% respectively.

These analyses for volume calculations are also given

in Table. 5. The maximum relative error was approxi-
mately 0.13% for the geometry of A and about 0.2% for
the geometry of B.

4 Conclusions

The radiation flux in Monte Carlo transport problems is
often estimated as the track length per unit volume or is
related to the current per unit surface area. However, the
algorithm for computing cell volumes and surface areas in
MCNP and OpenMC is not capable of treating all kinds
of geometries, especially for non-rotationally symmetric or
non-polyhedral cells.

In this work, two modules named MCSC and MCVC
have been proposed and implemented to calculate the sur-
face area and volume of desired cells in the radiation trans-
port codes system. The proposed approach is able to cal-
culate all kinds of surface areas and volumes of complex
geometries with reasonable accuracy and precision in a
relatively low computational time.

Four simple geometries were investigated as illustra-
tive examples to evaluate the performance of the proposed
method. The maximum computation time to obtain a rel-
ative error of less than 0.1% in the calculation of volume
and surface area of a cubic geometry was about 3.09 sec
and 3.52 sec respectively. The results showed that the
number of geometrical surfaces can be the most significant
factor in determining the elapsed time of calculations.

The presented modules can be efficiently used in all of
the Monte Carlo-based fluid dynamics and molecular dy-
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namics calculation codes that utilize CG geometry mod-
elling.

Conflict of Interest

The authors declare no potential conflict of interest re-
garding the publication of this work.

References

Breton, E., Choquet, P., Bergua, L., et al. (2008). In
vivo peritoneal surface area measurement in rats by micro-
computed tomography (µct). Peritoneal Dialysis Interna-
tional, 28(2):188–194.

Brown, F. B., Barrett, R., Booth, T., et al. (2002). MCNP
version 5. Trans. Am. Nucl. Soc, 87(273):02–3935.

Brown, F. B. et al. (2003). MCNP–a general monte carlo
n-particle transport code, version 5. Los Alamos National
Laboratory, Oak Ridge, TN.

Castro, F. and Sbert, M. (2000). Application of Quasi-Monte
Carlo Sampling to the Multi Path Method for Radiosity. In
Proceedings of a Conference held at the Claremont Gradu-
ate University, Claremont, California, USA, pages 163–176.
Springer.

Do Carmo, M. P. (2016). Differential geometry of curves and
surfaces: revised and updated second edition. Courier Dover
Publications.

Dorst, L. and Smeulders, A. W. (1987). Length estimators
for digitized contours. Computer Vision, Graphics, and Image
Processing, 40(3):311–333.

Fang, Y., Liu, Y.-S., and Ramani, K. (2009). Three dimen-
sional shape comparison of flexible proteins using the local-
diameter descriptor. BMC Structural Biology, 9:1–15.

Flin, F., Brzoska, J.-B., Coeurjolly, D., et al. (2005). Adap-
tive estimation of normals and surface area for discrete 3-D
objects: application to snow binary data from X-ray tomogra-
phy. IEEE Transactions on Image Processing, 14(5):585–596.
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