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H I G H L I G H T S

• The two-body cluster EFT is used to study the low-energy d-d elastic scattering up to NLO.
• The unknown EFT low-energy coupling constants are determined up o NLO.
• The obtained phase shifts and differential cross section results are compared to the experimental data.

A B S T R A C T

We study the low-energy deuteron-deuteron elastic scattering using the cluster effective
field theory formalism up to next-to-leading order (NLO). For this purpose, we initially
focus on determination of the unknown effective field theory coupling constant values
using the phase shift analysis and available differential cross section data. The differential
cross section versus center of mass energy and scattering angle are plotted up to NLO
in the suggested power counting and compared to the available experimental data. Our
effective field theory results show good consistency with the experimental data.

K E Y W O R D S

Elastic scattering

Coulomb interaction

Cross section

Phase shift

H I S T O R Y

Received: 21 November 2022

Revised: 14 December 2022

Accepted: 14 December 2022

Published: Winter 2023

1 Introduction

The main expedient of describing the interaction be-
tween the light nuclei such as d-d, d−3He, d−3H, d−4He,
3H−3He, and others is the subject of some theoretical
studies. Also, astrophysical radiative capture precesses,
e.g. deuteron-deuteron (d-d) radiative capture reaction,
are known as theoretically interesting reactions. In the
present work, we focus on applying the effective field the-
ory (EFT) formalism as a model independent, system-
atic and controlled-precision procedure to investigation of
d-d elastic scattering at center of mass (c.m.) energies
about a few MeV corresponding to the validity of EFT
expansion and the consideration of deuterons as point-
like nuclear clusters. The evaluated results can help us to
investigate the astrophysical radiative capture processes
d+d→4He+γ using halo/cluster in the future.

The applications of EFT approach in the few-nucleon
systems have widely studied (Bedaque and Van Kolck,

2002; Braaten and Hammer, 2006; Kaplan et al., 1998;
Phillips et al., 2000; Chen et al., 1999). Resently, the
nuclear systems with A > 4 which can be classified in
the two-body sector are extensively studied by halo EFT
scheme (Hammer et al., 2017). The deuteron can be con-
sidered as a simplest halo nucleus which core is a nucleon,
however, there are some EFT works that the deuteron
field is introduced as an elementary-like field (Ando, 2014;
Ando et al., 2014; Arani et al., 2017a; Arani, 2020). Halo
EFT captures the physics of resonantly P -wave interac-
tions in neutron-alpha scattering up to next-to-leading or-
der (NLO) (Bertulani et al., 2002; Bedaque et al., 2003)
and studying two-neutron halo system 6He (Ji et al., 2014;
Arani et al., 2017b). The effects of the Coulomb inter-
action in two-body systems such as proton-proton (p-p)
(Kong and Ravndal, 1999, 2000; Barford and Birse, 2003;
Ando et al., 2007; Ando and Birse, 2008), p-7Li (Lensky
and Birse, 2011), α−12C (Ando, 2016), and alpha-alpha
(α − α) scattering (Higa et al., 2008) and 3He(α, γ)7Be
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(Higa et al., 2018), have been considered by the EFT ap-
proach.

The phase shift analysis and differential cross section
calculation for the d-d elastic scattering procedure, after
determination of the unknown EFT low-energy coupling
constants (LECs), are the main purposes of this paper.
We obtain the EFT LECs by using available experimen-
tal data and theoretical results for d-d elastic scatter-
ing in the low energies. In the very low-energy region,
Ed = 80−360 keV, measurement of the cross section have
been done (Marlinghaus et al., 1975; Niewisch and Fick,
1975). These studies provided no evidence for a resonance
near d-d threshold. Since the earlier compilation on the
A = 4 system, a considerable amount of theoretical work
on 2H(d,d)2H elastic scattering has been done (Meier and
Glöckle, 1975). A resonating group method (RGM) with
imaginary potential was applied to d-d scattering (Burke
and Laskar, 1961; Thompson, 1970; Chwieroth et al., 1972;
Xuan and Fan-An, 1985).

Our paper is organized as follows. In Sec. 2 we intro-
duce the long-range Coulomb interaction and strong effec-
tive Lagrangian for the d-d system at low energies. The
halo EFT calculation of leading order (LO) and NLO scat-
tering amplitudes together with the pure-Coulomb scat-
tering amplitude are presented in Sec. 3. Sec. 4 is al-
located to determination of the values of unknown EFT
coupling constants for all spin singlet, triplet and quintet
partial wave channels using the available scattering data.
In Sec. 5 the LO and NLO EFT results for the differential
cross sections in terms of c.m. energy and scattering angle
are indicated and compared with the available experimen-
tal data. We summarize the paper and discuss extension
of the investigation to other few-body systems in Sec. 6.

2 Interaction

According to the spin of deuteron (S = 1), two deuterons
can meet in 9 distinct spin states, classifiable into the sin-
glet, triplet and quintet states. According to the isospin of
deuteron (T = 0) and Considering the l-wave components
of d-d system, the antisymmetrized wave function have
S = 0, 2 with even l and S = 1 with odd l. At low ener-
gies, only S- and P -waves are important so, there are two
S-waves (1S0, 5S2) and three P -waves (3P0, 3P1, and 3P2

corresponding to total angular momentums J = 0, 1, and
2). At the present low-energy approach, we present the
classification by orbital symmetries of the d-d system. So,
we have generally 3 distinguishable channels 1S0, 5S2 and
3P which contribute to the deuteron-deuteron scattering
amplitude.

It is noted that the deuteron cluster is very weakly
bound; hence, it can be easily decomposed in the strong
interaction region of d-d interaction. The main difficulty
in the d-d scattering problem arises from the loose binding
of the deuteron cluster and thus any pair of deuterons in a
strong interaction region distort each other very violently.
This distortion inserts the contributions of the proton-
3H(p-t) and neutron-3He(n-τ) interactions in the d-d elas-
tic scattering amplitude specially by increasing the incom-
ing energy. The cluster EFT that we construct treats

the deuterons as the point-like nuclear clusters which can
make dimerons in the S- and P -waves 1S0, 5S2 and 3P .
Therefore, the d-d system is investigated as two-body clus-
ter and the effects of the n-τ and p-t channels will be
omitted.

Taking into consideration two deuterons as two
charged nuclear clusters, we have generally both long-
range Coulomb force and short-range strong interaction
for the d-d system. We describe these interactions in the
following sections.

 

 

 

   =                   +                  

Figure 1: The Coulomb Green’s function. The wavy and
double lines depict a deuteron and a photon, respectively.

2.1 Coulomb force

For low-energy scattering of two charged deuterons, the
strength of Coulomb photon exchange is provided by the
Sommerfeld parameter ηp = kC/p, where p is the rela-
tive momentum of two deuterons in c.m. frame and kC
is the inverse of the Bohr radius of the system which
is given for d-d interaction as kC = αem µ ∼ 7 MeV.
αem=e2/4π∼1/137 indicates the fine-structure constant
and µ denotes the reduced mass of d-d system. Based
on the fact that each photon-exchange insertion is pro-
portional to ηp so, in the current low-energy scattering
process, p∼ kC , we should consider the full Coulomb in-
teraction including all multiple photon exchange at the
same order as depicted in Fig. 1. The free and Coulomb
green’s function for d-d system are respectively given by

Ĝ±0 (E) =
1

E − Ĥ0 ± iε

Ĝ±C(E) =
1

E − Ĥ0 − V̂C ± iε

(1)

where VC = αem/r and Ĥ0 = p̂2/2µ are the repulsive
Coulomb potential between two deuterons and the free
Hamiltonian, respectively. The Coulomb green’s function
for two-deuteron can be related to the free green’s function
using the integral equation

Ĝ±C = Ĝ±0 + Ĝ±0 V̂C Ĝ
±
C (2)

which shows an infinite sum of Feynman diagrams as in-
dicated in Fig. 1. The incoming and outgoing Coulomb
wave functions can be obtain by solving the Schrodinger
equation with the full Hamiltonian Ĥ = Ĥ0 + V̂C as
(Gasser et al., 2008; Goldberger and Watson, 2004; Weiss,
1958)

ψ(±)
p (~r) =e−

1
2πηpΓ(1± iηp)
×M(∓iηp, 1,±ipr − i~p · ~r) ei~p·~r

(3)
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where M(a, b;x) is well-known as the Kummer function.

According to the Coulomb wave functions (Eq. (3)),
the useful expressions in the next calculations for the non-
perturbative Coulomb corrections of the strong scattering
amplitude can be derived as

ψ
(∓)∗
p′ (~0)ψ(±)

p (~0) = C2
0 (ηp)e

±2iσ0

[
~∇ψ(∓)∗

p′ (~0)
]
·
[
~∇ψ(±)

p (~0)
]

= C2
0 (ηp)(1 + η2

p) ~p·~p′e±2iσ1

[
~∇ψ(±)∗

p (~0)
]
·
[
~∇ψ(±)

p (~0)
]

= C2
0 (ηp)(p

2 + k2
C) (4)

where the Sommerfeld factor C2
0 (ηp), the probability to

find the two interacting particles at zero separation, is
given by

C2
0 (ηp) = |ψ(±)

p (~0)|2 =
2πηp

e2πηp − 1
(5)

and

σl = arg Γ(l + 1 + iηp) =
1

2i

[
Γ(l + 1 + iηp)

Γ(l + 1− iηp)

]
(6)

is the Coulomb phase shift for l partial wave.

2.2 Strong interaction

Neglecting the relativistic corrections and the effects of
the pion exchange, the degrees of freedom for the d-
d scattering process in the current halo EFT study are
the deuterons as a point-like nuclear cluster. In this
low-energy formalism, the relative momentum of two
deuterons, p ≤ kC , scales as a low-momentum Q. Here,
the breakdown momentum scale Λ is also set by the
lowest-energy degrees of freedom that have been inte-
grated out. With respect to no existing explicit pions
and any deuteron deformations, Λ is the smallest be-
tween the pion mass mπ ∼ 140 MeV and the c.m. mo-
mentum corresponding to the deuteron binding energy
(Edcm ∼ −Bd = Λ2/2md). So, the high-momentum scale
would be considered as Λ∼√2mdBd∼90 MeV.

Around the p ∼ kC ∼ 7 MeV, we expect an expansion
parameter of the order of 1/12. By increasing the energy
the expansion deteriorates and the precision of the EFT
prediction will be questionable for Ecm = p2/2µ > 4 MeV.
A reliable estimate regards to the momentums lower than
60 MeV. In the present study, we focus on the d-d scat-
tering at low energies 0 < Ecm ≤ 2 MeV corresponding
to the momentums 0 < p ≤ 60 MeV. The Sommerfeld
parameter ηp is enhanced by decreasing the energy. So,
ηp would be large around p . kC and the elastic scat-
tering amplitude requires non-perturbative treatment of
the Coulomb photons. Furthermore, the large value of
ηp leads to 2kCH(ηp) ∼ p2/6kC (Higa et al., 2008). For
the S-wave channels, 2kCH(ηp) is comparable in magni-
tude to the effective-range term and can be automatically
captured by taking 3kC ∼ Λ. In the P -waves, we have
2kC(p2 + k2

C)H(ηp) ∼ p2kC/6 + p4/6kC and the term in-
cluding H(ηp) can be also managed by scaling kC/3 ∼ Q
and 2/3kC ∼ 1/Λ.

Table 1: The suggested power-counting for effective range pa-
rameters. Q and Λ denote the low- and high-momentum scales
as introduced in the text.

ξ 1/a[ξ] r[ξ]/2 s[ξ]/4

1S0 Λ 1/Λ 1/Λ2Q

5S2 Λ 1/Λ 1/Λ3

3P Q4/Λ Q4/Λ3 1/Λ

As discussed, at low energies the Coulomb photons en-
ter non-pertubatively. However, it is not clear if the short-
range strong interaction in terms of effective range param-
eters should be included in perturbation or not. Fitting
the EFT expression to the phase shifts and cross section
data in the following section, we propose a power-counting
(PC) that the effective-range parameters of ξ channel are
scaled as presented in Table 1. The LO contribution of the
scattering amplitude in each channel comes clearly from
both its scattering length and effective range and its shape
parameter influence is considered at NLO. According to
the scaling the effective-range parameters of ξ channel as
indicated in Table 1, the LO differential cross section of
the d-d elastic scattering is dominantly constructed by the
scattering length and effective range of 5S2 channel. The
s[5S2] and the remained effective range parameters enter
as the higher-order corrections in total cross section.

The Lagrangian of the strong d-d interaction up to
NLO is given by

L[ξ] = d†i

(
i∂0 +

~∇2

2md

)
di + η[ξ]T [ξ]†

(
i∂0 +

~∇2

2MT
−∆[ξ]

)
T [ξ]

+ g[ξ]
[
T [ξ]†

(
diΠ

[ξ]
ij dj) + h.c.

]

+h[ξ]T [ξ]†
(
i∂0 +

~∇2

2MT

)2

T [ξ]† + · · · (7)

where “. . . ” stands for terms containing higher powers of
fields and derivatives, suppressed by higher powers of the
breakdown scale. The vector deuteron auxiliary field is
denoted by di, with i index as the spin components of the
deuteron. Also, the dimer auxiliary field is introduced by
T [ξ]. The md and MT =2md are the mass of the deuteron
and dimeron, respectively. We have η[ξ] = ±1 and the g[ξ],
h[ξ] and ∆[ξ] are the EFT coupling constants of channel ξ.

In Eq. (7), the operator Π
[ξ]
ij is introduced as the following

relations for S- and P -wave channels

Π
[ξ]
ij =





1
2δij , ξ =1S0

1√
6
εij , ξ =5S2

1
2
√

2
εijkPk, ξ =3P0

3
2
√

5
(δikδjl − δilδjk)εlPk, ξ =3P1

1√
2
εijnεnkPk, ξ =3P2





(8)
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with

εiε
∗
j =

1

3
δij (9)

εijε
∗
kl =

1

10

(
δilδjk + δikδjl −

2

3
δijδlk

)
(10)

where σi with i = 1, 2, 3 depicts the spin Pauli matrices

and Pk = 1
2i (
−→∇k −

←−∇k).

3 Scattering amplitude

The elastic scattering amplitude of two particles in the
c.m. frame interacting via short-range strong and long-
range Coulomb interactions is given by

T (~p′, ~p;E) = TC(~p′, ~p;E) + TSC(~p′, ~p;E) (11)

where TC indicates the pure-Coulomb scattering ampli-
tude and TSC represents the scattering amplitude for the
strong interaction in the pretence of the Coulomb inter-
action with E = p2/2µ. ~p and ~p′ denote the momentum
vectors of incoming and outgoing particles.

3.1 Pure-Coulomb amplitude

The pure Coulomb scattering amplitude can be written as

TC(~p′, ~p;E) = 〈~p′|V̂C |ψ(+)
p 〉 (12)

According to the Coulomb wave function introduced in
Eq. (3), the partial wave expansion of the pure Coulomb
amplitude can be written as

TC(~p′, ~p;E) =

∞∑

l=0

(2l + 1)T lC(p)Pl(p̂
′ · p̂)

= −2π

µ
fC(θ)

(13)

with

T lC(p) = −2π

µ

e2iσl − 1

2ip
(14)

where cos θ = p̂·p̂′ and p = |~p| = |~p′|. The explicit solution
leads to the well-known Mott scattering cross section

fC(θ) = − η2
p

2kC
csc2(θ/2) exp

[
2iσ0 − 2iηp ln(sin(θ/2))

]
(15)

which holds at very low energies.

3.2 Coulomb-subtracted scattering amplitude

The strong scattering amplitude modified by Coulomb cor-
rections is

TSC(~p′, ~p;E) = 〈ψ(−)
p′ |V̂S |Ψ(+)

p 〉 (16)

where V̂S is strong interaction operator and Ψ
(±)
p denotes

the incoming/outgoing state of Coulomb-distorted inter-
action. TSC amplitude can be expressed in the partial

wave decomposition

TSC(~p′, ~p;E) =
∞∑

l=0

(2l + 1)T lSC(p) e2iσlPl(p̂
′ · p̂)

= −2π

µ
fSC(θ)

(17)

with

T lSC(p) = −2π

µ

e2iδl − 1

2ip
= −2π

µ

1

p cot δl − ip
(18)

in terms of the Coulomb-corrected phase shift δl. The
Coulomb-subtracted phase shift δl is usually expressed in
terms of a modified effective range expansion (ERE) as
(Goldberger and Watson, 2004)

T
[l]
CS(p) = −2π

µ
×

C2
0 (ηp)Wl(ηp)

− 1
al

+ 1
2rl p

2 + 1
4sl p

4 + · · · − 2kCWl(ηp)H(ηp)

(19)

where al, rl, and sl are the scattering length, effective
range, and shape parameter and we have

Wl(ηp) =
k2l
C

(l!)2

l∏

n=0

(1 +
n2

η2
p

) (20)

H(ηp) =ψ(iηp) +
1

2iηp
− ln(iηp) (21)

where the function ψ is the logarithmic derivative of Γ-
function.

3.3 EFT scattering amplitudes up to NLO

The building block of the d-d scattering amplitude is the
full propagator of the dimeron as shown in Fig. 2. The
EFT diagram of the d-d elastic scattering amplitude with-
out contributions of p−t and n−τ interactions up to NLO
is shown in Fig. 2. The bare and full propagators of T [ξ]

are depicted by the thick dashed line and the thick dashed
line with filled circle, respectively.

According to the suggested PC in Table 1, the LO con-
tribution of Coulomb-subtracted d-d scattering for chan-
nel ξ can be obtained by considering first three terms in
Lagrangian (Eq. (7)) and the last term initially enters as
NLO corrections. In order to evaluate the cluster EFT
results for the d-d elastic scattering amplitude in channel
ξ, the external legs should be attached to the full dimeron
propagator as shown in the first line of Fig. 2. So, the S-
and P -wave Coulomb-subtracted EFT amplitudes up to
NnLO (n = 0, 1) can be determined by

−iT [n,ξ]
SC (p) e2iσ0 = −i g[ξ]2D[n,ξ](E,~0)C2

0 (ηp) e2iσ0 (22)

for ξ =1S0, 5S2 channels and

− i 3T
[n,ξ]
SC (p)e2iσ1 p̂·p̂′

= −i g[ξ]2D[n,ξ](E,~0)C2
0 (ηp)(p

2+k2
C) e2iσ1 p̂·p̂′

(23)

for 3P channel. We emphasize that the relations Eq. (22)
and Eq. (23) are derived using expressions in Eq. (4).
According to Fig. 2, the NnLO (n = 0, 1) full dimeron
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propagator for channel ξ in c.m. frame can be evaluated
by

D[n,ξ](E,~0)=
η[ξ]

E −∆[ξ] − η[ξ]Σ[ξ](E)

×
(

1−n η[ξ]g
[ξ]
2 E2

E −∆[ξ] − η[ξ]Σ[ξ](E)

) (24)

with

Σ[ξ](E) =
1

2l + 1
g[ξ]2Jl(E). (25)

The Jl function is divergent and should be regularized. We
regularize the divergence by dividing the Jl function into
two finite and infinite parts as Jl=Jfinl + Jdivl . The finite
terms of the functions J0 and J1 for S- and P -wave states
are obtained as (Kong and Ravndal, 1999; Higa et al.,
2008)

Jfin0 (p) = −kCµ
π

H(ηp), (26)

Jfin1 (p) = −kCµ
π

(p2 + k2
C)H(ηp). (27)

The divegent part is momentum independent for S waves
and for the P wave are sum up momentum independent
and momentum squared parts. These divergences ab-
sorbed in ∆[ξ], g[ξ] and h[ξ] parameters via introducing

the renormalized parameters ∆
[ξ]
R , g

[ξ]
R and h

[ξ]
R . Conse-

quently, the EFT scattering amplitude for the S channels
(3S1, 5S2) and 3P channels up to NLO can be written as

T
[n,ξ]
SC (p) = −2π

µ

C2
0 (ηp)

2π∆
[ξ]
R

η[ξ]g[ξ]2µ
− 1

2 ( 2π
η[ξ]g[ξ]2µ2

)p2−2kCH(ηp)

×
[

1

︸︷︷︸
LO

+
1

4
n

( 2πh[ξ]

g[ξ]2µ3
)

2π∆
[ξ]
R

η[ξ]g[ξ]2µ
− 1

2 ( 2π
η[ξ]g[ξ]2µ2

)p2−2kCH(ηp)
p4

︸ ︷︷ ︸
NLO corection

]

(28)

 

 

 

 

 

 

 

 

       =                         +                                    

Figure 2: The amplitude of the two-deuteron elastic scat-
tering. The thick dashed line is the bare dimeron propagator
and the thick dashed line with a filled circle represents the full
dimeron propagator. All remained notations are as in Fig. 1.

and

T
[n,ξ]
SC (p) =

− 2π

µ

C2
0 (ηp)(p

2 + k2
C)

6π∆
[ξ]
R

η[ξ]g
[ξ]2

R µ
− 1

2 ( 6π

η[ξ]g
[ξ]2

R µ2
)p2−2kC(p2 + k2

C)H(ηp)
×

[
1

︸︷︷︸
LO

+
1

4
n

(
6πh

[ξ]
R

g
[ξ]2

R µ3
)

6π∆
[ξ]
R

η[ξ]g
[ξ]2

R µ
− 1

2 ( 6π

η[ξ]g
[ξ]2

R µ2
)p2−2kC(p2 + k2

C)H(ηp)
p4

︸ ︷︷ ︸
NLO corection

]

(29)
respectively. Comparing Eqs. (28) and (29) with ERE
expansion of Eq. (19) yields

∆
[ξ]
R =−µη

[ξ]g[ξ]2

2πa[ξ]
,

g[ξ]2 =− 2π

µ2η[ξ]r[ξ]
,

h[ξ] =−µ
3g[ξ]2s[ξ]

2π

(30)

for 3S1 and 5S2 channels and

∆
[ξ]
R =−µη

[ξ]g
[ξ]2

R

6πa[ξ]
,

g
[ξ]2

R =− 6π

µ2η[ξ]r[ξ]
,

h
[ξ]
R =−µ

3g
[ξ]2

R s[ξ]

6π

(31)

for 3P channels. The unknown bare and renormalized EFT
LECs in Eqs. (30) and (31) and also sign of the param-
eter η[ξ] should be initially determined by matching EFT
expression of phase shift and cross section to the available
experimental data.

4 EFT coupling constants determination

As previously explained, in the low-energy region for the
d-d scattering the S- and P -wave channels (ξ =1S0, 5S2,
3P ) dominantly contribute in the total scattering cross sec-
tion. Calculating the physical scattering observables e.g.,
phase shifts and cross section, based on the cluster EFT
expressions needs to determine the values of the LECs in
Lagrangian (Eq. (7)). Determination of the EFT LECs
for the S and P partial waves are presented in the follow-
ing subsections.

Table 2: The determined S-wave effective range parameters.
The parameters obtain from fits to the low-energy phase shifts
data in Ref. (Meier and Glöckle, 1975). The shape parameters

s[ξ] is only used at the NLO fits. χ[ξ]2 is as described in the
text.

ξ order a[ξ] [fm] r[ξ] [fm] s[ξ] [fm3] χ[ξ]2

1S0 LO 4.3825 0.8135 0 0.0023
NLO 4.3170 3.0702 340.021 0.0026

5S2 LO 6.1436 1.6234 0 0.0066
NLO 6.1428 1.6372 2.1513 0.0066
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Figure 3: (color online) Comparison of the ERE fits and halo EFT calculations for the 1S0 and 5S2 d-d elastic scattering phase
shifts with the results from Ref. (Meier and Glöckle, 1975). Dots is the results in (Meier and Glöckle, 1975) and the solid, dotted
and dashed lines denote the calculations of ERE, LO EFT and NLO EFT, respectively.
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Figure 4: (color online) The fit of the halo EFT calculations for the 3 P d-d elastic differential cross section to the results from
Ref. (ENDF/B, 2022). Dots is the results in Ref. (ENDF/B, 2022). The solid, dotted and dashed lines denote the calculations
of ERE, LO EFT and NLO EFT, respectively. The light blue and red bands denote the systematical EFT uncertainties of the
LO and LO+NLO EFT results.

4.1 l = 0 partial waves

This constructed cluster EFT for two deuterons system is
reliable at the incident c.m. energies below 2 MeV. For the
energy range of order few ten keV, a phase shift analysis
was reported for d-d elastic scattering in the l = 0 chan-
nels with spin 0 and 2 in Ref. Meier and Glöckle (1975).
This existing phase shift data for ξ =1S0, 5S2 channels at
very low energies help us to obtain the values of LECs
of the S-waves. Using Eq. (18), the Coulomb-modified
phase shift in terms of the on-shell scattering amplitude
for channel ξ up to NnLO (n = 0, 1) is given by

δ[ξ](p) = cot−1

(
− 2π

µp
Re
(
[T

[n,ξ]
CS (p)]−1

))
. (32)

Fitting the relations Eq. (32) to the available phase
shift data for two S partial waves of Ref. (Meier and
Glöckle, 1975), we obtain the values of the effective range
parameters at LO and up to NLO. The effective range

parameters of 1S0 and 5S2 channels have been obtained
depending on our explained fits as reported in Table 2.
As seen from Table 2, in each channel, we use the power
counting that the scattering amplitudes gets LO contribu-
tions from scattering length and effective range and cor-
rection of the shape parameter enters at NLO. The quality
of description of available results F ava on the basis of the
certain expression F can be estimated by the χ2 method
which is written as

χ2 =
1

N

N∑

i=1

[
Fi − F avai

F avai

]2

(33)

where N is the number of measurements. Taking into con-
sideration F as δ[ξ] introduced in Eq. (32), the deviations
of fits from used phase shift results for ξ channel are ob-
tained as shown in the last column of Table 2 by χ[ξ]2 .
Now, using the obtained LO and NLO values of effective
range parameters presented in Table 2, the LO and up to
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Table 3: The EFT LECs for all channels. The LO (n = 0) and NLO (n = 1) values of the EFT coupling constants determined
by using the obtained values of the effective range parameters presented in Table 2. The third row in each channel indicates our
suggested power-counting estimations for evaluated EFT LECs with Q ∼ kC and Λ ∼ 90 MeV.

ξ n g[ξ] [MeV−l−1/2] ∆
[ξ]
R [MeV] h[ξ] [MeV−1] η[ξ]

0 0.0415 11.6071 0 −1
1S0 1 0.0214 3.1221 2.6761 −1

PC estimation 0.0179 4.3186 2.9771 −
0 0.0294 4.1490 0 −1

5S2 1 0.0293 4.1145 0.0317 −1
PC estimation 0.0179 4.3186 0.2316 −

ξ n g
[ξ]
R [MeV−l−1/2] ∆

[ξ]
R [MeV] h

[ξ]
R [MeV−1] η[ξ]

0 0.0287 1.6251 0 +1
3P 1 0.0248 1.2384 8705.97 +1

PC estimation 0.0329 4.3186 6327.51 −

NLO values of EFT LECs for spin 0 and 2 channels are
determined as indicated in the first and second rows of
Table 3. The estimation of our used power-counting for
the LECs of each channel presented as ”PC estimation” in
Table 3. The orders of obtained EFT LECs are meaning-
fully consistent with the predictions of suggested PC. The
obtained EFT phase shifts of two deuterons scattering in
S-wave channels are shown in Fig. 3. The LO (up-to-
NLO) EFT and fitted ERE results of two S-wave phase
shifts are plotted against c.m. energy by dotted (dashed)
and solid lines, respectively. In Fig. 3, the circles indi-
cate the phase shift data from Ref. (Meier and Glöckle,
1975). We considered the d-d elastic scattering pase shifts
in the energy range below 1 MeV in the c.m. frame, which
are sufficient for solving various problems, in particular,
evaluating the differential cross sections at the valid EFT
range.

4.2 l = 1 partial waves

Lack of the phase shift analysis and experimental data for
l = 1 channel at low energies causes to use the available
cross section data to find the values of the 3P coupling
constants. The differential scattering cross section of two
deuterons is given by (ENDF/B, 2022)

dσ(θ)

dΩ
=

1

9

∑

S

(2S+1)
∣∣∣f(θ) + (−1)Sf(π − θ)

∣∣∣
2

(34)

where f(θ) = fC(θ) + fSC(θ). The scattering amplitudes
fC and fSC are described in Sec. 3. Inserting the EFT
amplitudes Eqs. (22) and (23) for S and P waves into
Eq. (17), and using the obtained values of EFT LECs for
1S0 and 5S2 channels, we can match the EFT expression
for the differential cross section of d-d elastic scattering to
the reported experimental data in Ref. (ENDF/B, 2022)
for the c.m. scattering angle θcm = 90◦ and find the 3P
coupling constants. The fits lead to the determined values
presented in the last row of Table 3. The LO and up-
to-NLO EFT fits to differential cross section data in Ref.
(ENDF/B, 2022) are shown in Fig. 4.

Based on described power-counting, we consider the
coupling constants corresponding to the scattering length
and effective range at LO calculation and the shape pa-
rameter effect enters at NLO by inserting the last term
of Lagrangian (Eq. (7)) containing the h[ξ] coupling con-
stant. Our PC estimations for the order of values of the
EFT LECs are also shown in Table 3. Determined values
have good consistency with used PC as presented in Table
3.

5 Results

Taking into account the determined values of EFT LECs
presented in Table 3, we can compute the differential cross
section at different incident energies and scattering angles.
We recall that we use the pure d-d channel in which the
influence of other p-t and n-τ interactions is not taken into
consideration.

In order to calculate the differential cross section for
the low-energy d-d elastic scattering, some important is-
sues should be clarified. At low energies the cross section
gets dominant contributions from S and P waves scatter-
ing. According to phase shift analysis and available phase
shift results, the leading term in the d-d scattering cross
section is from S-wave spin quintet channel 5S2. However,
both S-wave spin singlet and P-wave spin triplet channels
enter first at NLO as presented by our suggested PC in
Table 1. Contribution of each spin channel in the cross
section shown in Fig. 5.

On the other hands, regarding to the phase shift analy-
sis for all S- and P -wave channels, the leading d-d scatter-
ing cross section constructed by the corresponding relation
to the scattering length of 5S2 channel. The NLO correc-
tions of the d-d scattering cross section get the contribu-
tions from the scattering length and the effective range of
1S0 and the effective range of 5S2 partial wave. Remained
partial-wave parameters first enter at N2LO and higher
orders.

Our results for the differential cross sections of the d-
d elastic scattering against c.m. energy with laboratory
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Figure 5: (color online) The differential cross section of elastic scattering of d-d vs c.m. energy Ecm. The graphs have been
plotted with the outgoing deuteron angles in laboratory system θlab = 20◦, θlab = 60◦, θlab = 90◦ and θlab = 120◦ respectively.
Symbols are the experimental data of (ENDF/B, 2022). The red dotted, blue dashed and black solid lines are the d-d scattering
cross section with S = 2, S = 0, 2 and S = 0, 1, 2 channels, respectively. The left (right) plots are concluded from only LO
(LO+NLO) terms of each spin channels, respectively.

scattering angles θlab = 20◦, 60◦, 90◦ and 120◦ are shown
in Fig. 5. The LO and NLO EFT results are depicted by
the dashed and solid lines, respectively. We have also plot-

ted the differential cross section versus the c.m. scattering
angle for the d-d scattering in Fig. 6 for incident deuteron
energy Ed = 50 and 100 keV. The dashed and solid lines
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Figure 6: (color online) The differential cross section of elastic scattering of d-d vs c.m. energy θcm with incident deuteron
energies Ed = 50 and 100 keV. Symbols are the experimental data of (ENDF/B, 2022). The blue dashed and black solid lines are
the the LO and LO+NLO EFT results as explained in the text.

represent our LO and NLO EFT results, respectively.

6 Conclusion and outlook

In this paper, we have studied the low-energy two
deuterons scattering using cluster EFT. Our constructed
cluster EFT treats the deuterons as the point-like nu-
clear clusters, so we concentrated on the energy region
0 < Ecm < 1 MeV. At the present energy region, the
Coulomb force have been considered as a non-perturbative
treatment.

We have shown that a PC can be formulated that leads
to consistent renormalization. Based on our suggested PC,
the LO contributions of phase shift in each partial wave
have been constructed from its scattering length and ef-
fective range and its shape parameter influences have been
included at the NLO. Using the available phase shift re-
sults for both S waves, we obtained the values of the effec-
tive range parameters for these states. The EFT LECs for
l = 0 partial waves evaluated in terms of effective range
parameters. With respect to no existing the phase shift
data for the 3P channels, we used the differential cross
section data at a fixed scattering angle to determine the
EFT coupling constants for these chanels. We note that
the effects of the p-t and n-τ interactions are negligible up
to NLO and have not been included in the present calcu-
lation. Our ERE fitted curves and the cluster EFT calcu-
lations for the S-wave phase shifts and elastic differential
cross section have good consistency with the available re-
sults, and a converging pattern from LO to NLO.

Considering our used PC, the cross sections of the d-d
scattering got the LO contributions from the 5S2 channel
and other 1S0 and 3P channels enter at NLO. We have
plotted the LO and NLO differential cross sections against
the c.m. scattering angle and also the incident total en-
ergy. The comparison to the experimental data indicates
good consistency of our EFT evaluations.

It would be interesting to use our results for the d+d
→4He+γ astrophysical radiative capture based on cluster

EFT calculation. The effects of including the the p − t
and n − τ interactions could be considered to study the
d+d
 p+τ and d+d
 n+t processes in the future. The
d-d scattering and radiative capture can also be studied
by the three- four-body EFT formalism.
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