A peer-reviewed journal published by K. N. Toosi University of Technology

Document Type : Research Article

Authors

1 Department of Physics‎, ‎K.N‎. ‎Toosi University of Technology‎, ‎P.O‎. ‎Box 16315-1618‎, ‎Tehran‎, ‎Iran

2 Malek Ashtar University of Technology, Tehran, Iran.

Abstract

We study the low-energy deuteron-deuteron elastic scattering using the cluster effective field theory formalism up to next-to-leading order (NLO). For this purpose, we initially focus on determination of the unknown effective field theory coupling constant values using the phase shift analysis and available differential cross section data. The differential cross section versus center of mass energy and scattering angle are plotted up to NLO in the suggested power counting and compared to the available experimental data. Our effective field theory results show
good consistency with the present data.

Highlights

  • The two-body cluster EFT is used to study the low-energy d-d elastic scattering up to NLO.
  • The unknown EFT low-energy coupling constants are determined up o NLO.
  • The obtained phase shifts and differential cross section results are compared to the experimental data.

Keywords

Ando, S.-I. (2014). The Born series for S-wave quartet n-d scattering at small cutoff values. Few-Body Systems, 55(3):191–201.
Ando, S.-I. (2016). Elastic C-12 scattering at low energies in cluster effective field theory. The European Physical Journal A, 52(5):1–8.
Ando, S.-I. and Birse, M. C. (2008). Renormalization-group analysis for low-energy scattering of charged particles. Physical Review C, 78(2):024004.
Ando, S.-i., Shin, J. W., Hyun, C. H., et al. (2007). Low energy proton-proton scattering in effective field theory. Physical Review C, 76(6):064001.
Ando, S.-I., Yang, G.-S., and Oh, Y. (2014). λ-λ H-4 in halo effective field theory. Physical Review C, 89(1):014318.
Arani, M. M. (2020). Low-energy scattering of deuteron by He-3 3 He and H-3 3 H in halo effective field theory. The European Physical Journal A, 56(8):1–11.
Arani, M. M., Koohi, A., and Yarmahmoodi, S. (2017a). d + t → n + α fusion reaction in a model inspired by halo/cluster effective field theory. International Journal of Modern Physics E, 26(12):1750080.
Arani, M. M., Radin, M., and Bayegan, S. (2017b). n+n+ α →6He+γ reaction by effective field theory approach. Progress of Theoretical and Experimental Physics, 2017(9):093D07.
Barford, T. and Birse, M. C. (2003). Renormalization group approach to two-body scattering in the presence of long-range forces. Physical Review C, 67(6):064006.
Bedaque, P., Hammer, H.-W., and Van Kolck, U. (2003). Narrow resonances in effective field theory. Physics Letters B, 569(3-4):159–167.
Bedaque, P. F. and Van Kolck, U. (2002). Effective field theory for few-nucleon systems. Annual Review of Nuclear and Particle Science, 52(1):339–396.
Bertulani, C., Hammer, H.-W., and Van Kolck, U. (2002). Effective field theory for halo nuclei: shallow p-wave states. Nuclear Physics A, 712(1-2):37–58.
Braaten, E. and Hammer, H.-W. (2006). Universality in few- body systems with large scattering length. Physics Reports, 428(5-6):259–390.
Burke, P. and Laskar, W. (1961). Four Nucleon Reactions with Central Forces. Proceedings of the Physical Society (1958-1967), 77(1):49.
Chen, J.-W., Rupak, G., and Savage, M. J. (1999). Nucleon-nucleon effective field theory without pions. Nuclear Physics A, 653(4):386–412.
Chwieroth, F., Tang, Y., and Thompson, D. (1972). Study of d+d scattering with the resonating-group method and an imaginary potential. Nuclear Physics A, 189(1):1–19.
ENDF/B (2022). ENDF/B online database at the NNDC On-line Data Service, http://www.nndc.bnl.gov. Evaluated Nuclear Data File (ENDF).
Gasser, J., Lyubovitskij, V. E., and Rusetsky, A. (2008). Hadronic atoms in QCD+ QED. Physics Reports, 456(5-6):167–251.
Goldberger, M. L. and Watson, K. M. (2004). Collision theory. Courier Corporation.
Hammer, H., Ji, C., and Phillips, D. (2017). Effective field theory description of halo nuclei. Journal of Physics G: Nuclear and Particle Physics, 44(10):103002.
Higa, R., Hammer, H.-W., and van Kolck, U. (2008). α – α scattering in halo effective field theory. Nuclear Physics A, 809(3-4):171–188.
Higa, R., Rupak, G., and Vaghani, A. (2018). Radiative He- 3(α,γ α,γ)Be-7 reaction in halo effective field theory. The European Physical Journal A, 54(5):1–12.
Ji, C., Elster, C., and Phillips, D. (2014). He-6 nucleus in halo effective field theory. Physical Review C, 90(4):044004.
Kaplan, D. B., Savage, M. J., and Wise, M. B. (1998). Two-nucleon systems from effective field theory. Nuclear Physics B, 534(1-2):329–355.
Kong, X. and Ravndal, F. (1999). Proton–proton scattering lengths from effective field theory. Physics Letters B, 450(4):320–324.
Kong, X. and Ravndal, F. (2000). Coulomb effects in low energy proton–proton scattering. Nuclear Physics A, 665(1-2):137–163.
Lensky, V. and Birse, M. C. (2011). Coupled-channel effective field theory and proton-7Li scattering. The European Physical Journal A, 47(11):1–10.
Marlinghaus, E., Genz, H., Pospiech, G., et al. (1975). Elastic scattering 2H(d,d)2H below 360 keV:(I). Experiment. Nuclear Physics A, 255(1):13–20.
Meier, W. and Glöckle, W. (1975). Elastic scattering 2H(d, d)2H below 360 keV:(II). Theory. Nuclear Physics A, 255(1):21–34.
Niewisch, J. and Fick, D. (1975). Elastic deuteron-deuteron scattering at low bombarding energies. Nuclear Physics A, 252(1):109–119.
Phillips, D. R., Rupak, G., and Savage, M. J. (2000). Improving the convergence of N-N effective field theory. Physics Letters B, 473(3-4):209–218.
Thompson, D. (1970). Study of the d+d system using the method of resonating group structure. Nuclear Physics A, 143(2):304–314.
Weiss, G. H. (1958). Quantum Mechanics. Non-relativistic theory. LD Landau and EM Lifshitz. vol. 3, of Course of Theoretical Physics. Translated by JB Sykes and JS Bell. Pergamon Press, London; Addison Wesley, Reading, Mass., 1958. xii+ 515 pp. 12.50.Science,128(3327) : 767 − 768.
Xuan, Z. and Fan-An, Z. (1985). Soft repulsive core effects in (d+d) scattering and reaction. Nuclear science and Engineering, 89(4):351–361.