An international journal published by K. N. Toosi University of Technology

Document Type : Research Article


Department of Physics, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran


Boron Neutron Capture Therapy (BNCT) is one of the promising treatment methods for some malignant tumors such as Glioblastoma Multiforme (GBM). One of the requirements of BNCT treatment is the accurate and real-time boron-concentration monitoring to ensure the efficacy of treatment and no leakage of boron. An accurate method for real-time calculation of the boron dose distribution mapping during irradiation is Single Photon Emission Computed Tomography (SPECT), in which the determination of boron distribution is based on the detection of 478 keV prompt gamma-rays generated through thermal neutron capturing by B-10. Tehran Research Reactor (TRR) is the only possible source for BNCT in Iran, so as the first approach, this BNCT-SPECT system has been evaluated for TRR. In this paper, an imaging system of BNCT-SPECT including four arrays of collimator/detector has been designed for real-time dosimetry as well as boron-10 concentration distribution map in the phantom that placed in front of the therapeutic neutron beam using the Monte Carlo simulation code MCNP6. Maximum Likelihood Expectation Maximization (MLEM) method has been used for image reconstruction which results 1 cm spatial resolution.


• The requirement for online monitoring boron dose in BNCT to ensure the effectiveness of the treatment.
• Optimization of an imaging system based on SPECT for online dosimetry in BNCT based on TRR.
• Reconstruction of B-10 concentration distribution map in tumor phantom by MLEM method.


Aihara, T. and Morita, N. (2012). Bnct for advanced or recurrent head and neck cancer. In Neutron Capture Therapy, pages 417–424. Springer.
Andrews, H. L., Murphy, R. E., and LeBrun, E. J. (1957). Gel dosimeter for depth-dose measurements. Review of Scientific Instruments, 28(5):329–332.
Bahnamiri, S. B. (2015). Investigation of collimator influential parameter on SPECT image quality: a Monte Carlo study. Journal of Biomedical Physics & Engineering, 5(1):39.
Bailey, D. L., Maisey, M. N., Townsend, D. W., et al. (2005). Positron emission tomography, volume 2. Springer.
Barth, R. F., Coderre, J. A., Vicente, M. G. H., et al. (2005). Boron neutron capture therapy of cancer: current status and future prospects. Clinical Cancer Research, 11(11):3987–4002.
Barth, R. F., Soloway, A. H., Fairchild, R. G., et al. (1992). Boron neutron capture therapy for cancer, realities and prospects. Cancer, 70(12):2995–3007.
Barth, R. F., Soloway, A. H., Goodman, J. H., et al. (1999). Boron neutron capture therapy of brain tumors: an emerging therapeutic modality. Neurosurgery, 44(3):433–450.
Barth, R. F., Vicente, M. H., Harling, O. K., et al. (2012). Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiation Oncology, 7(1):1–21.
Beauchemin, D. (2008). Inductively coupled plasma mass spectrometry. Analytical Chemistry, 80(12):4455–4486.
Bovey, F. A., Mirau, P. A., and Gutowsky, H. (1988). Nuclear magnetic resonance spectroscopy. Elsevier.
Bowman, J., Hyde, E., and Eppley, R. (1973). Alpha spectroscopy of isotopes produced by high energy nuclear reactions. LBL-1666, page 4.
Braby, L. and Badhwar, G. (2001). Proportional counter as neutron detector. Radiation measurements, 33(3):265–267.
Bushberg, J. T., Seibert, J. A., Leidholdt Jr, E. M., et al. (2003). The essential physics of medical imaging.
Chadha, M., Capala, J., Coderre, J. A., et al. (1998). Boron neutron-capture therapy (BNCT) for glioblastoma multiforme (GBM) using the epithermal neutron beam at the Brookhaven National Laboratory. International Journal of Radiation Oncology* Biology* Physics, 40(4):829–834.
Cherry, S. R., Sorenson, J. A., and Phelps, M. E. (2012). Physics in nuclear medicine e-Book. Elsevier Health Sciences.
Dahlbom, M. and King, M. A. (2017). Principles of SPECT and PET imaging. In Physics of PET and SPECT Imaging, pages 25–62. CRC Press.
De Deene, Y., Hanselaer, P., De Wagter, C., et al. (2000). An investigation of the chemical stability of a monomer/polymer gel dosimeter. Physics in Medicine & Biology, 45(4):859.
Egerton, R. F. (2008). Electron energy-loss spectroscopy in the TEM. Reports on Progress in Physics, 72(1):016502.
Egerton, R. F. (2011). Electron energy-loss spectroscopy in the electron microscope. Springer Science & Business Media.
Fatemi, S., Abbene, L., Principato, F., et al. (2018a). High performance 3D CZT spectro-imager for BNCT-SPECT: preliminary characterization. In 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC), pages 1–3. IEEE.
Fatemi, S., Altieri, S., Bortolussi, S., et al. (2018b). Preliminary characterization of a CdZnTe photon detector for BNCT-SPECT. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 903:134–139.
Fatemi, S., Bortolussi, S., Magni, C., et al. (2018c). Prompt gamma tomography for BNCT-SPECT: a feasibility study using small animal phantoms. In 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC), pages 1–5. IEEE.
Fukuda, H., Hiratsuka, J., Kobayashi, T., et al. (2003). Boron neutron capture therapy (BNCT) for malignant melanoma with special reference to absorbed doses to the normal skin and tumor. Australasian Physics & Engineering Sciences in Medicine, 26(3):97.
Gong, C., Tang, X., Fatemi, S., et al. (2018). A Monte Carlo study of SPECT in boron neutron capture therapy for a heterogeneous human phantom. International Journal of Radiation Research, 16(1).
Goorley, T., James, M., Booth, T., et al. (2012). Initial MCNP6 release overview. Nuclear Technology, 180(3):298–315.
Hadler, J., Iunes, P., Paulo, S., et al. (1995). A discussion of the reliability of alpha-spectroscopy using CR-39 and an image processor. Radiation Measurements, 25(1-4):749–752.
Hanselman, D. and Littlefield, B. (1996). Mastering MATLAB: a comprehensive tutorial and reference. Prentice-Hall, Inc.
Harris, R. K. (1986). Nuclear magnetic resonance spectroscopy. IAEA (2001). Current status of neutron capture therapy. IAEA-TECDOC-1223.
Izewska, J. and Rajan, G. (2005). Radiation dosimeters. Radiation oncology physics: A Handbook for teachers and students, pages 71–99.
Kageji, T., Mizobuchi, Y., Nagahiro, S., et al. (2011). Clinical results of boron neutron capture therapy (BNCT) for glioblastoma. Applied Radiation and Isotopes, 69(12):1823–1825.
Karsch, L., Beyreuther, E., Burris-Mog, T., et al. (2012). Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors. Medical Physics, 39(5):2447–2455.
Kasesaz, Y., Khalafi, H., and Rahmani, F. (2014). Design of an epithermal neutron beam for BNCT in thermal column of Tehran research reactor. Annals of Nuclear Energy, 68:234–238.
Kato, I., Ono, K., Sakurai, Y., et al. (2004). Effectiveness of BNCT for recurrent head and neck malignancies. Applied Radiation and Isotopes, 61(5):1069–1073.
Kim, M.-S., Shin, H.-B., Choi, M.-G., et al. (2020). Reference based simulation study of detector comparison for BNCT-SPECT imaging. Nuclear Engineering and Technology, 52(1):155–163.
Kliauga, P., Rossi, H., and Johnson, G. (1989). A multielement proportional counter for radiation protection measurements. Health physics, 57(4):631–636.
Kobayashi, T., Sakurai, Y., and Ishikawa, M. (2000). A noninvasive dose estimation system for clinical BNCT based on PGSPECTConceptual study and fundamental experiments using HPGe and CdTe semiconductor detectors. Medical physics, 27(9):2124–2132.
Lambert, J. B., Mazzola, E. P., and Ridge, C. D. (2019). Nuclear magnetic resonance spectroscopy: an introduction to principles, applications, and experimental methods. John Wiley & Sons.
Manabe, M., Sato, F., and Murata, I. (2016). Basic detection property of an array-type cdte detector for BNCT–SPECT–Measurement and analysis of anti-coincidence events. Applied Radiation and Isotopes, 118:389–394.
Men´endez, P., Roth, B., Pereira, M., et al. (2009). Bnct for skin melanoma in extremities: updated argentine clinical results. Applied Radiation and Isotopes, 67(7-8):S50–S53.
Minsky, D. M., Valda, A., Kreiner, A., et al. (2009). Experimental feasibility studies on a SPECT tomograph for BNCT dosimetry. Applied Radiation and Isotopes, 67(7-8):S179–S182.
Minsky, D. M., Valda, A., Kreiner, A., et al. (2011). First tomographic image of neutron capture rate in a bnct facility. Applied Radiation and Isotopes, 69(12):1858–1861.
Miyatake, S.-I., Kawabata, S., Hiramatsu, R., et al. (2016). Boron neutron capture therapy for malignant brain tumors. Neurologia Medico-Chirurgica, pages ra–2015.
Molnar, G. (2004). Handbook of prompt gamma activation analysis: with neutron beams, volume 1. Springer Science & Business Media.
Montaser, A. (1998). Inductively coupled plasma mass spectrometry. John Wiley & Sons. Muehllehner, G. and Karp, J. S. (2006). Positron emission tomography. Physics in Medicine & Biology, 51(13):R117.
Murata, I., Mukai, T., Nakamura, S., et al. (2011). Development of a thick CdTe detector for BNCT–SPECT. Applied Radiation and Isotopes, 69(12):1706–1709.
Ollinger, J. M. and Fessler, J. A. (1997). Positron-emission tomography. IEEE Signal Processing Magazine, 14(1):43–55.
Paul, R. and Lindstrom, R. (2000). Prompt gamma-ray activation analysis: fundamentals and applications. Journal of Radioanalytical and Nuclear Chemistry, 243(1):181–189.
Ramani, R., Russell, S., and O’Brien, P. (1997). Clinical dosimetry using MOSFETs. International Journal of Radiation Oncology, Biology, Physics, 37(4):959–964.
R´evay, Z. and Moln´ar, G. (2003). Standardisation of the prompt gamma activation analysis method. Radiochimica Acta, 91(6):361–369.
Rikner, G. and Grusell, E. (1987). General specifications for silicon semiconductors for use in radiation dosimetry. Physics in Medicine & Biology, 32(9):1109.
Rosenfeld, A. B., Biasi, G., Petasecca, M., et al. (2020). Semiconductor dosimetry in modern external-beam radiation therapy. Physics in Medicine & Biology, 65(16):16TR01.
Siegbahn, K. (2012). Alpha-, beta- and gamma-ray spectroscopy. Elsevier.
Sodhi, R. N. and Brion, C. (1984). Reference energies for inner shell electron energy-loss spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 34(4):363–372.
Soubra, M., Cygler, J., and Mackay, G. (1994). Evaluation of a dual bias dual metal oxide-silicon semiconductor field effect transistor detector as radiation dosimeter. Medical physics, 21(4):567–572.
Taylor, H. E. and Taylor, H. M. (2001). Inductively coupled plasma-mass spectrometry: practices and techniques. Academic Press.
Valda, A., Minsky, D., Kreiner, A., et al. (2005). Development of a tomographic system for online dose measurements in BNCT (Boron Neutron Capture Therapy). Brazilian Journal of Physics, 35(3B):785–788.
van Rij, C. M., Wilhelm, A. J., Sauerwein, W. A., et al. (2005a). Boron neutron capture therapy for glioblastoma multiforme. Pharmacy World and Science, 27(2):92–95.
Venning, A., Hill, B., Brindha, S., et al. (2005). Investigation of the PAGAT polymer gel dosimeter using magnetic resonance imaging. Physics in Medicine & Biology, 50(16):3875.
Verbakel, W. F. A. R. and Stecher-Rasmussen, F. (1997). A -ray telescope for on-line measurements of low boron concentrations in a head phantom for BNCT. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 394(1-2):163–172.
Wagner, E. and Hurst, G. (1958). Advances in the standard proportional counter method of fast neutron dosimetry. Review of Scientific Instruments, 29(2):153–158.
Wang, L.-W., Liu, Y.-W. H., Chou, F.-I., et al. (2018). Clinical trials for treating recurrent head and neck cancer with boron neutron capture therapy using the Tsing-Hua Open Pool Reactor. Cancer Communications, 38(1):1–7.
Wernick, M. N. and Aarsvold, J. N. (2004). Emission tomography: the fundamentals of PET and SPECT. Elsevier.
Yamamoto, T., Nakai, K., and Matsumura, A. (2008). Boron neutron capture therapy for glioblastoma. Cancer Letters, 262(2):143–152.
Yazdandoust, H., Ghal-Eh, N., and Firoozabadi, M. (2021). TENISThErmal Neutron Imaging System for use in BNCT. Applied Radiation and Isotopes, 176:109755.
Ziessman, H. A., O’Malley, J. P., and Thrall, J. H. (2013). Nuclear medicine: The requisites E-book. Elsevier Health Sciences.