Akcay, H. (2009). Dirac equation with scalar and vector quadratic potentials and Coulomb-like tensor potential. Physics Letters A, 373(6):616–620.
Arda, A. (2017). Solution of effective-mass Dirac equation with scalar-vector and pseudoscalar terms for generalized Hulth´en potential. Advances in High Energy Physics, 2017.
Arda, A., Aydo˘gdu, O., and Sever, R. (2010). Scattering of the Woods–Saxon potential in the Schr¨odinger equation. Journal of Physics A: Mathematical and Theoretical, 43(42):425204.
Aydo˘gdu, O. and Sever, R. (2010). Exact solution of the Dirac equation with the mie-type potential under the pseudospin and spin symmetry limit. Annals of Physics, 325(2):373–383.
Berakdar, J. (2001). Many-body scattering theory of electronic systems. arXiv preprint math ph/0105028.
Blanter, Y. M. and B¨uttiker, M. (2000). Shot noise in mesoscopic conductors. Physics reports, 336(1-2):1–166.
Bruneau, L., Jakˇsi´c, V., and Pillet, C.-A. (2013). Landauer-B¨uttiker formula and Schrödinger conjecture. Communications in Mathematical Physics, 319(2):501–513.
B¨uttiker, M., Imry, Y., Landauer, R., et al. (1985). Generalized many-channel conductance formula with application to small rings. Physical Review B, 31(10):6207.
Chang-Yuan, C., Fa-Lin, L., Dong-Sheng, S., et al. (2013). Analytic solutions of the double ring-shaped Coulomb potential in quantum mechanics. Chinese Physics B, 22(10):100302.
Chen, C.-Y., Lu, F.-L., Sun, D.-S., et al. (2016). Spin–orbit interaction for the double ring-shaped oscillator. Annals of Physics, 371:183–198.
Chen, C.-Y., Sun, D.-S., and Lu, F.-L. (2004). Scattering states of the Klein–Gordon equation with Coulomb-like scalar plus vector potentials in arbitrary dimension. Physics Letters A, 330(6):424–428.
Cheng, Y.-F. and Dai, T.-Q. (2007). Exact solutions of the klein-gordon equation with a ring-shaped modified kratzer potential. Chinese Journal of Physics, 45(5):480.
Dapor, M. (2004). An analytical approximation of the differential elastic scattering cross-section for electrons in selected oxides. Physics Letters A, 333(5-6):457–467.
Dapor, M., Miotello, A., and Zari, D. (2000). Monte Carlo simulation of positron-stimulated secondary electron emission from solids. Physical Review B, 61(9):5979.
Datta, S. (1995). Electronic transport in mesoscopic systems. Cambridge university press.
Dong, S.-H. and Lozada-Cassou, M. (2004). Scattering of the Dirac particle by a Coulomb plus scalar potential in two dimensions. Physics Letters A, 330(3-4):168–172.
Dyall, K. G. and Fægri Jr, K. (2007). Introduction to relativistic quantum chemistry. Oxford University Press.
Edet, C., Okoi, P., Yusuf, A., et al. (2021). Bound state solutions of the generalized shifted hulthen potential. Indian Journal of Physics, 95(3):471–480.
Eshghi, M. and Abdi, M. (2013). Relativistic particle scattering states with tensor potential and spatially-dependent mass. Chinese Physics C, 37(5):053103.
Eshghi, M. and Hamzavi, M. (2012). Spin symmetry in Diracattractive radial problem and tensor potential. Communications in Theoretical Physics, 57(3):355.
Eshghi, M. and Ikhdair, S. (2014a). Relativistic effect of pseudospin symmetry and tensor coupling on the Mie-type potential via laplace transformation method. Chinese Physics B, 23(12):120304.
Eshghi, M. and Ikhdair, S. M. (2014b). Dirac particle in generalized Pöschl–Teller field including a Coulomb-like tensor coupling: super-symmetric solution. Mathematical Methods in the Applied Sciences, 37(18):2829–2839.
Eshghi, M. and Ikhdair, S. M. (2014c). Laplace transformation approach to the spin symmetry of the Mie-Type potential with a Coulomb tensor interaction. Zeitschrift f¨ur Naturforschung A, 69(3-4):111–121.
Eshghi, M. and Mehraban, H. (2012a). Eigen spectra in the Dirac-hyperbolic problem with tensor coupling. Chinese Journal of Physics, 50(4):533–543.
Eshghi, M. and Mehraban, H. (2012b). Solution of the Dirac equation with position-dependent mass for q-parameter modified P¨oschl–Teller and Coulomb-like tensor potential. Few- Body Systems, 52(1):41–47.
Eshghi, M., Mehraban, H., and Ikhdair, S. M. (2017). The relativistic bound states of a non central potential. Pramana, 88(4):73.
Fa-Lin, L. and Chang-Yuan, C. (2010). Bound states of the Schrödinger equation for the P¨oschlTeller double-ring-shaped Coulomb potential. Chinese Physics B, 19(10):100309.
Ferry, D. and Goodnick, S. M. (1999). Transport in nanostructures. Number 6. Cambridge university press.
Gaspard, P. (2015a). Scattering approach to the thermodynamics of quantum transport. New Journal of Physics, 17(4):045001.
Gaspard, P. (2015b). Scattering theory and thermodynamics of quantum transport. Annalen der Physik, 527(9-10):663–683.
Imry, Y. (1997). Introduction to Mesoscopic Physics. Oxford University Press, New York.
Jia, C.-S., Chen, T., and Cui, L.-G. (2009). Approximate analytical solutions of the Dirac equation with the generalized P¨oschl–Teller potential including the pseudo-centrifugal term. Physics Letters A, 373(18-19):1621–1626.
Joachain, C. J. (1975). Quantum collision theory. North- Holland, Amsterdam.
Landau, L. D. and Lifshitz, E. M. (2013). Quantum Mechanics: Non-relativistic theory, 3rd Ed. Pergamon, Elsevier.
Landauer, R. (1957). Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM Journal of Research and Development, 1(3):223–231.
Levitov, L. S., Lee, H., and Lesovik, G. B. (1996). Electron counting statistics and coherent states of electric current. Journal of Mathematical Physics, 37(10):4845–4866.
Lin, Q.-g. (1999). Scattering of relativistic particles by a Coulomb field in two dimensions. Physics Letters A, 260(1-2):17–23.
Lisboa, R., Malheiro, M., De Castro, A., et al. (2004). Pseudospin symmetry and the relativistic harmonic oscillator. Physical Review C, 69(2):024319.
Maghsoodi, E., Hassanabadi, H., and Zarrinkamar, S. (2013). Exact solutions of the dirac equation with PöschlTeller double-ring-shaped Coulomb potential via the NikiforovUvarov method. Chinese Physics B, 22(3):030302.
Moghadam, S. A., Mehraban, H., and Eshghi, M. (2013). Eigen-spectra in the Dirac-attractive radial problem plus a tensor interaction under pseudospin and spin symmetry with the SUSY approach. Chinese Physics B, 22(10):100305.
Motohashi, H. and Noda, S. (2021). Exact solution for wave scattering from black holes: Formulation. arXiv preprint arXiv:2103.10802.
Nazarov, Y. V. and Blanter, Y. M. (2009). Quantum transport: introduction to nanoscience. Cambridge university press.
Nikiforov, A. F. and Uvarov, V. B. (1988). Special functions of mathematical Physics. Springer.
Ochiai, M. and Nakazato, H. (2018). Completeness of scattering states of the Dirac Hamiltonian with a step potential. Journal of Physics Communications, 2(1):015006.
Sˆaad, R. B. and Pillet, C.-A. (2014). A geometric approach to the Landauer-B¨uttiker formula. Journal of Mathematical Physics, 55(7):075202.
Sakhnovich, L. (2019). Relativistic Lippmann–Schwinger equation as an integral equation. Reviews in Mathematical Physics, 31(09):1950032.
Salem, L. and Montemayor, R. (1993). Modified riccati approach to partially solvable quantum Hamiltonians. III. Related families of P¨oschl-Teller potentials. Physical Review A, 47(1):105.
Schiff, L. I. (1995). Quantum mechanics, volume 3. New-York, McGraw-Hill Book Co. Spiegel, M. R. (1965). Schaum’s outline of theory and problems of Laplace transforms. Schaum Publishing Company.
Sun, D.-S., Lu, F.-L., You, Y., et al. (2015a). Parity inversion property of the double ring-shaped oscillator in cylindrical coordinates. Modern Physics Letters A, 30(39):1550200.
Sun, D.-S., Lu, F.-L., You, Y., et al. (2015b). Parity inversion property of the double ring-shaped oscillator in cylindrical coordinates. Modern Physics Letters A, 30(39):1550200.
Tasaki, S. (2001). Nonequilibrium stationary states of noninteracting electrons in a one dimensional lattice. Chaos, Solitons & Fractals, 12(14-15):2657–2674.
Tasaki, S. and Takahashi, J. (2006). Nonequilibrium steady states and MacLennan-Zubarev ensembles in a quantum junction system. Progress of Theoretical Physics Supplement, 165:57–77.
Taylor, J. R. (2006). Scattering theory: the quantum theory of nonrelativistic collisions. Courier Corporation.
Tesfahun, A. (2020). Small data scattering for cubic Dirac equation with hartree type nonlinearity in Rˆ1+3. SIAM Journal on Mathematical Analysis, 52(3):2969–3003.
Typel, S. (2013). Nuclei in dense matter and equation of state. In Journal of Physics: Conference Series, volume 413, page 012026. IOP Publishing.
Vicanek, M. and Urbassek, H. (1991). Reflection coefficient of low-energy light ions. Physical Review B, 44(14):7234.
Wang, C.-Z., Xu, H.-Y., and Lai, Y.-C. (2020). Scattering of dirac electrons from a skyrmion: Emergence of robust skew scattering. Physical Review Research, 2(1):013247.
Wang, Z. and Guo, D. (1979). An introduction to special function science press. Beijing (in Chinese).
Xue-Ao, Z., Ke, C., and Zheng-Lu, D. (2005). Bound states of Klein–Gordon equation and dirac equation for ring-shaped non-spherical oscillator scalar and vector potentials. Chinese Physics, 14(1):42.
Yazarloo, B., Mehraban, H., and Hassanabadi, H. (2015). Relativistic scattering states of the Hellmann potential. Acta Physica Polonica A, 127(3):684–688.
You, Y., Lu, F.-L., Sun, D.-S., et al. (2018). The visualization of the space probability distribution for a particle moving in a double ring-shaped Coulomb potential. Advances in High Energy Physics, 2018.
Zarrinkamar, S., Rajabi, A., and Hassanabadi, H. (2010). Dirac equation for the harmonic scalar and vector potentials and linear plus Coulomb-like tensor potential; the SUSY approach. Annals of Physics, 325(11):2522–2528.
Zeng, J.-Y. (2000). Quantum Mechanics Science Press, Vol. II, 3rd Ed. Science Press, Beijing.
Zhang, M.-C. and Huang-Fu, G.-Q. (2012). Solution of the dirac equation in the tridiagonal representation with pseudospin symmetry for an anharmonic oscillator and electric dipole ring shaped potential. Annals of Physics, 327(3):841–850.