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H I G H L I G H T S

• The eigenvalue and eigenvector were obtained by the Bohr Hamiltonian.
• The numerical calculations for the excited energy and transition rates were calculated.
• The phase transition from spherical to axially deformed nuclei were applied for Ru-100, Pd-114, and Xe-124 nuclei.
• The phase transition from prolate to oblate shapes were applied for Os-180, Dy-162, Gd-160 nuclei.

A B S T R A C T

In the present work, the eigenvalue and eigenvector has been obtained by the Bohr Hamil-
tonian for even-even nuclei. The competition between γ-stable and γ-rigid collective
motions has been created in the presence of the rigidity parameter. The β-part of the
collective potential has been chosen to be equal to the generalized Hulthen potential,
while the γ-angular part of the problem is associated with Ring-shaped potential around
the γ = π/6 and the Harmonic oscillation around the γ = 0. In both cases, the effect of
rigidity and free parameters on energy spectrum of Os-180, Dy-162, Gd-160, Ru-100, Pd-
114, and Xe-124 nuclei have been investigated. Also, the rates of B(E2) transition have
been calculated and compared with experimental data. This model has an appropriate
description of energy spectra for the mentioned nuclei.
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1 Introduction

In collective models of even-even nuclei, the Bohr Hamil-
tonian provides an appropriate tool for the description
of collective quadrupole properties (Budaca and Budaca,
2015b), such as energy spectra and transition rates. These
solutions can be interesting by imposing γ-rigidity pa-
rameter. The Bohr Hamiltonian has been investigated
near the critical point symmetries in the nuclear structure
with various potentials that are expressed in β and γ vari-
ables. The phase transition is corresponding to the break-
ing of the dynamical symmetries (Bonatsos et al., 2007a;
Iachello, 2000, 2001a). In this discussion, the Z(5) critical
point symmetry is about the transition from prolate to
oblate shapes. Other symmetries are E(5) and X(5). The
E(5) model specifies the second order phase transition be-
tween U(5) (spherical) and O(6) (γ-unstable) nuclei. The
X(5) model characterizes first order phase transition be-

tween U(5) (spherical) and SU(3) (axially deformed nu-
clei). Excellent discussions can be found in Refs. (Budaca
and Budaca, 2015b; Bonatsos et al., 2007a; Iachello, 2000,
2001a; Chabab et al., 2015b, 2016, 2015a; Budaca and
Budaca, 2015a, 2016; Hassanabadi and Alimohammadi,
2018; Bonatsos et al., 2006; Alimohammadi and Hassan-
abadi, 2017). The X(5) model is founded on the square
well potential for β-part and a harmonic oscillator poten-
tial that centered around γ = 0 in γ-part. The X(5)-β2

model and the Es−X(5) model are other attached mod-
els of X(5). The γ-rigid version of X(5) model (by five
collective coordinates), called X(3) model (by three col-
lective coordinates) (Bonatsos et al., 2006). Two out of
three collective coordinates are Euler angles and the third
one is β, because there is a γ-rigid condition (γ = 0).

For example, M. Chabab et al. have studied Bohr
Hamiltonian with Hulthen potential in β-part and new
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generalized potential derived from a Ring-shaped in γ-
part for triaxial nuclei (Chabab et al., 2015a). On the
other hand, R. Budaca et al. have proposed an infinite
square well potential in β-part and a harmonic oscillator
form for the γ-part of potential to investigate the compe-
tition between the γ-rigid and γ-stable collective motions
in the phase transition (Budaca and Budaca, 2015b).

Bohr model has been evaluated in dierent approaches
such as the interplay of various shape phase conditions.
In this research, we have investigated Bohr Hamiltonian
with Hulthen potential for β-part in the interplay of γ-
stable and γ-rigid collective motions with both the Har-
monic oscillation and the Ring-shaped potentials for the
γ-part. We have added two free parameters, V0 and q, to
Hulthen potential to control the depth of potential and
shaped deformation. In the first part, the Harmonic os-
cillation around γ = 0 for the γ-part and Hulthen po-
tential for the β-part have an interplay between γ-rigid
and γ-stable collective motion in the critical point of the
phase transition from spherical to axially deformed nu-
clei (X(3) ∪ X(5) − H). In the second part, the Ring-
shaped potential around γ = π/6 for the γ-part and
Hulthen potential for the β-part have an interplay be-
tween γ-rigid and γ-stable collective motion in the crit-
ical point of the phase transition from prolate to oblate
nuclei (Z(3) ∪ Z(5) − H). We have evaluated the Bohr
Hamiltonian equation with the extra term to study the
competition situations by the free parameter to adminis-
ter the mode of the shape variable.

Furthermore, numerical calculations for the excited en-
ergies for Os-180, Dy-162, Gd-160, Ru-100, Pd-114, and
Xe-124 nuclei and B(E2) transition rates of proposed
models have been calculated and compared with the ex-
perimental data. This model by the rigidity parameter
χ enables a better description of energy spectra for both
models.

2 Theory of interplay between γ-stable
and γ-rigid collective condition

2.1 Bohr Hamiltonian

The interplay between γ-stable and γ-rigid collective mo-
tions attains by (Budaca and Budaca, 2015b; Bonatsos
et al., 2006; Budaca, 2014b,a):

H = χT1 + (1− χ)T2 + V (β.γ) (1)

where T1 is the kinetic energy operator for prolate γ-rigid
and T2 is the same operator corresponding to the five-
dimensional Bohr Hamiltonian. Also, V (β.γ) is the poten-
tial energy operator. The rigidity degree of the systems is
measured by χ parameter which is limited in 0 ≤ χ < 1
which χ = 1 associated with the prolate γ-rigid limit.

As pointed out, T1 and T2 operators are:

T1 = − }2

2B

[ 1

β2

∂

∂β
β2 ∂

∂β
− Q2

3β2

]
(2)

and

T2 = − }2

2B

[
1

β4

∂

∂β
β4 ∂

∂β
+

1

β2sin(3γ)

∂

∂γ
sin(3γ)

∂

∂γ

− 1

4β2

3∑

k=1

Q2
k

sin2(γ − 2

3
πk)

] (3)

where B introduces the mass parameter, and Q states
the angular momentum operator of the intrinsic frame
with the corresponding components Qk(k = 1, 2, 3). The
adapted potential for the present problem is:

v(β.γ) =
2B

}2
V (β.γ) = u(β) + (1− χ)

u(γ)

β2
(4)

According to Eqs. (1) and (4), the Schrdinger equa-
tion, Hψ(β, γ,Ω) = Eψ(β, γ,Ω), is separated into two
parts as follows:

[
(1− χ)

[
− 1

sin(3γ)

∂

∂γ
sin(3γ)

∂

∂γ
+

1

4

3∑

k=1

Q2
k

sin2(γ − 2

3
πk)

]

+ (1− χ)u(γ) + χ
Q2

3

]
ϕ(γ,Ω) = Wϕ(γ,Ω)

(5)
and
[
− ∂2

∂β2
+

(2χ− 4)

β

∂

∂β
+

1

β2
W + u(β)

]
ξ(β) = εξ(β)

(6)

where, the energy introduces as ε =
2B

}2
E, and W and ε

are the eigenvalues of equations. Likewise, the total wave
function is introduced by ψ(β, γ,Ω) = ξ(β)ϕ(γ,Ω).

Now, we use the generalized Hulthen potential for the
β part of total potential, Eq. (4), as follows:

u(β) = − V0e−δβ

1− qe−δβ (7)

where V0 is the potential depth, q is the shaped deforma-

tion parameter, and δ =
1

a
is the screening parameter and

a defines the range of the potential (Chabab et al., 2015a;
Hulthén, 1942a,b).

Insertion the function of ξ(β) as ξ(β) = βx−2f(β) in
the radial equation, Eq. (6), results in:

[
∂2

∂β2
−
( A
β2

+ u(β)− ε
)]
f(β) = 0 (8)

where:
A = W + (χ2 − 3χ+ 2) (9)

By using the following expression (Chabab et al.,
2015a):

1

β2
≈ δ2 e−δβ

(1− qe−δβ)2
(10)

and applying the new variable , also inserting Eqs. (7)
and (10) into Eq. (8), we have:

d2f

dy2
+

(1− y)

y(1− y)

df

dy
+

[−Ayδ2 + V0y(1− y) + qε(1− y)2

qδ2y2(1− y)2

]
f = 0

(11)
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To find the energy eigenvalues of Eq. (11), we use the
parametric generalization of the Nikiforov-Uvarov (NU)
method (Chabab et al., 2017; Nikiforov and Uvarov, 1988;
Eshghi and Hamzavi, 2012; Soheibi et al., 2017; Ikhdair,
2009) as:

ε = −
(qδ2

(
n+

1

2
+

√
W + (χ2 − 3χ+ 2)

q
+

1

4

)2 − V0

2qδ
(
n+

1

2
+

√
W + (χ2 − 3χ+ 2)

q
+

1

4

)

)2

(12)
where n is the principal quantum number. Equation (12)
is in accordance with the energy spectrum of Ref. (Chabab
et al., 2015a) for χ = 0 and q, V0 → 0 values. According
to NU method, the wave function is given by:

f(y) =Ny

√
−ε
δ2 (1− y)

1
2+
√

A
4 + 1

4

× P
(2

√
−ε
δ2

2
√

A
4 + 1

4 )

n (1− 2y)

(13)

The normalization constant of β part can be calculated
from the normalization condition as follow:

∫ ∞

0

ξ2(β)β4−2χdβ = 1 (14)

In this section, we calculate energy eigenvalues and
wave functions in the principal quantum number (n), sys-
tems rigidity parameter (χ), and the separation constant
(W ). It is known that n can be changed by change of
bands, and nχ is limited in 0 ≤ χ < 1. But for calcu-
lation of W in the angular part of the Hamiltonian (Eq.
(5)), we select two following potentials for the deformed
shape nuclei to achieve the final energy spectrum in two
approaches.

2.2 The Harmonic oscillator potential around
γ = 0

To solve Eq. (5), the rotational term of this equation has
been approximated in the prolate axial nuclei as (Budaca
and Budaca, 2015b; Iachello, 2001b):

3∑

k=1

Q2
k

sin2(γ − 2
3πk)

≈ 4

3
Q2 +Q2

3(
1

sin2(γ)
− 4

3
) (15)

In this case, we can separate the γ and angular vari-
ables by ϕ(γ,Ω) = η(γ)DLMK(Ω), where DLMK(Ω) is the
Wigner function, and L, M and K represent the total an-
gular momentum, its projections on the body-fixed and
laboratory-fixed z-axis, respectively. The following equa-
tion is derived for the γ shape variable:

[
− 1

sin(3γ)

∂

∂γ
sin(3γ)

∂

∂γ
+

K2

4sin2(γ)
+u(γ)

]
η(γ) = εγη(γ)

(16)
with:

εγ =
1

(1− χ)

[
W − L(L+ 1)− (1− χ)K2

3

]
(17)

By considering u(γ) as:

u(γ) = (3c)2
γ2

2
(18)

we get a hypothesis of small oscillations around γ = 0 that
pause at χ = 1. The parameter of c is defined the string
constant of the oscillator that demonstrates the stiffness of
the γ vibrations. By applying a harmonic approximation
for the trigonometric functions around γ = 0, we have:

[
− 1

γ

∂

∂γ
γ
∂

∂γ
+
K2

4γ2
+ u(γ)

]
η(γ) = εγη(γ) (19)

The solutions are readily obtained in terms of the La-
guerre polynomials (Budaca and Budaca, 2015b; Chabab
et al., 2016):

nnγ ,|K|(γ) = Nñγ ,|K|γ
|K/2|exp(−3c

γ2

2
)L
|K/2|
ñγ

(3cγ2) (20)

where ñγ = (nγ , |K/2|)/2, L
|K/2|
ñγ

represents the Laguerre

polynomial, and Nnγ ,|K|(γ) is a normalization constant
that is specified from the normalization condition as:

∫ π/3

0

η2nγ ,|K|(γ)|sin(3γ)|dγ = 1 (21)

In Eq. (19), we used |sin(3γ)| = |3γ| in the small γ
vibration, so the integral can be solvable (Chabab et al.,
2016, 2017):

Nñγ ,|K| =
[2
3

(3c)1+|K/2|
ñγ !

Γ(ñγ + 1 + |K/2|)
] 1

2 (22)

where nγ is the quantum number related to γ-excitation.
For states of (nγ ,K) = (0, 0) and (nγ ,K) = (1, 2), the
normalization constants are calculated as:

N2
0,0 = 2c and N2

1,2 = 6c2 (23)

where
N2

0,0

N2
1,2

=
1

3c
.

Therefore, the corresponding eigenvalues are:

εγ = 3c(nγ + 1), nγ = 0, 1, 2, ... (24)

with:

K =

{
0,±2nγ for even nγ

±nγ for odd nγ
(25)

We obtain W by a combination of Eqs. (17) and (24):

W = (1− χ)3c(nγ + 1) +
L(L+ 1)− (1− χ)K2

3
(26)

Therefore, in our calculations, the total wave function is
obtained as follows:

ψLMknnγ (β, γ,Ω) = εLKnnγ (β)ηnγ ,|K|(γ)

×
√

2L+ 1

16π2(1 + δk,0)
[DLMK(Ω) + (−1)LDLM−K(Ω)]

(27)

In the general case, the quadrupole operator is defined
as:

T
(E2)
M = tβ

[
D2
M,0(Ω)cos(γ)+

1√
2

(
D2
M,2(Ω) +D−2M,0(Ω)

)
cos(γ)

] (28)
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where t is a scale factor. By means of the above functions,
we can compute the B(E2) transition rates.

The B(E2) transition rates from an initial to a final
state are given by (Budaca and Budaca, 2015b; Chabab
et al., 2016; Bijker et al., 2003; Bonatsos et al., 2007b):

B(E2;Li Ki ni nγi → Lf Kf nf nγf ) =

5t2

16π
〈Li, ki; 2, ki − kf |Lf , kf 〉2I2niLi,nfLfC2

nγiKi,nγfKf

(29)
where, the first term is the Clebsch-Gordan coefficient and
dictating the angular momentum selection rules. I is the
integral over β variable:

IniLi,nfLf =

∫ ∞

0

βξLiKininγiξLfKfnfnγfβ
4−2χdβ (30)

and also, CnγiKi,nγfKf is the integral over γ variable and
has the form (Chabab et al., 2016):

CnγiKi,nγfKf =

∫ π/2

0

sin(γ)ηnγi,|K|iηnγf ,|K|f |sin(3γ)|dγ
(31)

For the transitions (g → g, β → β, γ → γ, and β → g) with
∆k = 0, the γ-integral part is reduced to the orthonor-
mality condition of the γ-wave functions CnγiKi,nγfKf =
δnγi,nγfKf δKi,Kf .

Also, for the transitions (γ → g, γ → β) with ∆k = 2,
and by using the approximation |sin(3γ)| = 3|γ|, Eq. (31)
recasts to:

CnγiKi,nγfKf =
2(3c)1+

|ki|
4 +

|kf |
4

(Γ(1 + |ki|
4 )Γ(1 +

|kf |
4 ))

1
2

×

∫ π/3

0

γ2+
|ki|
2 +

|kf |
2 e−3cγ

2

dγ

(32)

where the Laguerre polynomials are unity since ñγ = 0.
For (nγ , k) = (1, 2) → (0, 0) transition, Eq. (32) results
in:

C0,0;1,2 =
1√
3c
. (33)

2.3 The Ring-shaped potential around γ =
π

6

According to Ref. (Chabab et al., 2015a), we propose
Ring-shaped potential for the γ variable part of Hamilto-

nian with a minimum at γ =
π

6
as:

u(γ) =
c+ s cos2(3γ)

sin2(3γ)
(34)

By means of its expansion around γ =
π

6
and for a

small value of the parameter s in comparison with the pa-

rameter c,
s

c
� 1. We recover the Harmonic oscillator

with an additive constant which is also widely used in this
case:

u(γ) ≈ 1

2

(9

2
c
)(
γ − π

6

)2
+ c̃ (35)

where c̃ is the additive constant. Inserting Eq. (34) in Eq.
(5), one gets:

(1− χ)

[
− 1

sin(3γ)

∂

∂γ
sin(3γ)

∂

∂γ
+

1

4

3∑

k=1

Q2
k

sin2(γ − 2
3πk)

+
c+ s cos2(3γ)

sin2(3γ)

]
ϕ(γ,Ω) + χ

Q2

3
ϕ(γ,Ω)

= Wϕ(γ,Ω)
(36)

Now, we again separate the and angular variables by
ϕ(γ,Ω) = η(γ)DLMα(Ω), where L, M , and α are total an-
gular momentum quantum number, quantum number of
the projections of angular momentum on the laboratory
fixed z-axis, and the body-fixed x’-axis, respectively. Also,
there is a wobbling quantum number nw that depends on
α by nw = L − α. In the triaxial nuclei, the rotational
term of Eq. (36) is (Chabab et al., 2015a; Fortunato,
2004; Bonatsos et al., 2004a):

1

4

3∑

k=1

Q2
k

sin2(γ − 2
3πk)

≈ Q2 − 3

4
Q2

1 (37)

The last approximation leads to:

(
Q2 − 3

4
Q2

1

)
DLMα(Ω) = Λ1DLMα(Ω) (38)

where Λ1 = L(L + 1) − 3

4
α2 (Chabab et al., 2016), so

remaining terms of Eq. (36) lead to:

[
− 1

sin(3γ)

∂

∂γ
sin(3γ)

∂

∂γ
+
c+ s cos2(3γ)

sin2(3γ)

]
η(γ) = Λ2η(γ)

(39)
As pointed out in Ref. (Chabab et al., 2015a), eigen-

values of the last equation is Λ2 = 9nγ(nγ + 1) +
3
√
c+ s(2nγ + 1) + c). Finally, eigenvalue of Eq. (5) will

be obtained by:

W =(1− χ)[Λ1 + Λ2] + χ
L(L+ 1)

3

=(1− χ)

[
9nγ(nγ + 1) + 3

√
c+ s(2nγ + 1) + c

+
L(L+ 4) + 3nw(2L− nw)

4

]
+ χ

L(L+ 1)

3

(40)

Eigenfunctions of γ variable are given in terms of Leg-
endre polynomials:

η(γ) = NnγP
1
6

√
c+s

nγ+
1
6

√
c+s

(z) (41)

where z = cos(3γ) and, Nnγ is obtained by:

∫ π/3

0

η2nγ ,|K|(γ)|sin(3γ)| dγ = 1 (42)

In this case, we get the normalization condition as:

Nnγ =

√
3

2

(2
(
nγ + 1

6

√
c+ s

)
+ 1)(nγ !)

( 1
6

√
c+ s+ nγ)!

(43)
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Finally, the total wave function is given by:

ψLMαnnγ (β, γ,Ω) = ξLMαnnγ (β)ηnγ (γ)×
√

2L+ 1

16π2(1 + δα,0)
[DLMα(Ω) + (−1)LDLM−α(Ω)]

(44)

Both sections in energy eigenvalues and wave functions
have the same β part, according to Eqs. (12) and (13),
but are different in separation constant of and part wave
functions. We also can easily calculate the B(E2) transi-
tion rates with the above equations. The quadrupole op-
erator is determined by (Chabab et al., 2015a; Edmonds,
1996):

T
(E2)
M =tβ

[
D2
M.0(Ω)cos(γ − 2π

3
)+

1√
2

(
D2
M.2(Ω) +D−2M.−2(Ω)

)
sin(γ − 2π

3
)
] (45)

where t denotes the scale factor. The quadrupole oper-
ator changes to the following equation for triaxial nuclei

around γ =
π

6
:

T
(E2)
M = tβ

1√
2

(
D(2)
M.2(Ω) +D(−2)

M.−2(Ω)
)

(46)

Now, by means of the wave function, we can calculate
B(E2;Liαi → Lfαf ) transition rates from an initial to a
final state:

B(E2;Liαi → Lfαf ) =
5

16π

|〈Lfαf ||T (E2)||Liαi〉|2
(2Li + 1)

(47)
The Wigner-Eckart theorem cause to reduced matrix

element as:

〈LfMfαf ||T (E2)||LiMiαi〉 =

(Li2Lf |MiMMf )√
2Lf + 1

〈Lfαf ||T (E2)||Liαi〉
(48)

The B(E2) transition rates turn into the following gen-
eral expression:

B(E2;Liαi →Lfαf ) =
5

16π

t2

2

1

(1 + δαi,0)(1 + δαf ,0)

× [(Li2Lf |αi2αf ) + (Li2Lf |αi − 2αf )

+ (−1)L(Li2Lf |αi − 2− αf )]2

× [Iβ(ni, Li, αi;nf , Lf , αf )]2

(49)
In the above equation, integral over β is given by:

Iβ(ni, Li, αi;nf , Lf , αf ) =
∫ ∞

0

βξni,Li,αi(β)ξnf ,Lf ,αf (β)β4−2χdβ
(50)

It was confronted by three Clebsch-Gordan coefficients
that lead to ∆α = ±2 transition rule. The three coeffi-
cients involve αi + 2 = αf , αi − 2 = αf and αi + αf = 2,
respectively. The ground-state band (gsb) is specified by
n = 0, nγ = 0, and nw = 0 so αi = Li and αf = Lf . De-
tailed discussions on the B(E2) rates have been presented
in Ref. (Bonatsos et al., 2004b).

3 Numerical results and discussions

Having the continual deformed shape and collective prop-
erties, Os-180, Dy-162, Gd-160, Ru-100, Pd-114, and Xe-
124 nuclei have been studied so far. For example, see the
evaluations of Refs. (Budaca and Budaca, 2015b; Has-
sanabadi and Alimohammadi, 2018; Alimohammadi and
Hassanabadi, 2017). In the above sections, we have calcu-
lated equations of the energy spectra and B(E2) transition
rates by means of the generalized Hulthen potential for the
β part. However, in the angular part of the Hamiltonian,
we have selected two ways for deformed shape nuclei to
achieve the final energy spectrum.

The mentioned nuclei have been evaluated by tting
their experimental energy spectrum for ground, β, and
bands with the calculated formula and normalized to the
corresponding energy of the rst excited state. Therefore,
the nuclei have been discovered to have the smallest devia-
tions from the experimental data by the root mean square
(rms) deviation formula:

σ =

√∑m
i=1(Ei(exp) − Ei(th))2

(m− 1)E(2+1 )2
(51)

The experimental and obtained energies of the ith level are
specifying by Ei(exp) and Ei(th), respectively, where E(2+1 )
is the energy of the initial excited level of the ground-state
band and m shows the number of states involved in the
fitting. The results corresponding to the fit are presented
in Tables 1 and 2.

3.1 Results for the Harmonic oscillator potential
around γ = 0

The Harmonic oscillator potential is applied for Ru-100,
Pd-114, and Xe-124 nuclei in Sec. (2.2). In Eq. (27), all
ground states, β and γ bands are labeled by the set of
quantum numbers, K, n, nγ , L and uniquely identify this
model. The lowest bands are (Budaca and Budaca, 2015b;
Bijker et al., 2003):

1. The ground-state band is determined by K = 0, n =
0, nγ = 0.

2. The band is distinguished by K = 0, n = 1, nγ = 0.

3. The band is specified by K = 2, n = 0, nγ = 1.

According to Table 1, σ values (rms) of Dy-162 and
Gd-160 nuclei are small against those reported the Ref.
(Budaca and Budaca, 2015b). Therefore, there is an ac-
ceptable agreement between the calculated values and ex-
perimental data. This agreement is due to a number of
free parameters of the potentials for β part and angular
part of the Hamiltonian against the Ref. (Budaca and
Budaca, 2015b) with only two free parameters. It is the
advantage of our calculations compared with other works.

We have also computed the transition rates for the
nuclei in Table 3 by means of Eq. (29). There is an agree-
ment between some theoretical and experimental values.
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Table 1: Comparison of theoretical predictions and experi-
mental data for the ground state, β, and γ bands normalized
to the E(2+

g ) state for Os-180, Dy-162, and Gd-160 nuclei.

Gd-160 Dy-162 Os-180
Our

Exp.
Our

Exp.
Our

Exp.
work work work

R
4
+
g

2
+
g

3.31 3.301 3.30 3.29 3.310 3.09

R
6
+
g

2
+
g

6.88 6.84 6.84 6.80 6.87 6.802

R
8
+
g

2
+
g

11.65 11.53 11.56 11.42 11.65 9.52

R
10

+
g

2
+
g

17.60 17.28 17.41 17.05 17.64 13.38

R
12

+
g

2
+
g

24.68 24.00 24.36 24.57 24.81 17.48

R
14

+
g

2
+
g

32.87 31.59 32.39 30.89 33.17 21.76

R
0
+
β

2
+
g

18.03 18.33 19.77 20.66 4.19 5.57

R
2
+
β

2
+
g

19.44 19.08 21.25 21.43 5.44 6.29

R
4
+
β

2
+
g

22.67 - 24.61 23.39 8.26 7.97

R
2
+
γ

2
+
g

12.82 13.13 10.52 11.07 6.60 6.59

R
3
+
γ

2
+
g

13.76 14.05 11.46 11.49 7.57 7.74

R
4
+
γ

2
+
g

15.01 15.25 12.70 13.15 8.85 9.06

R
5
+
γ

2
+
g

16.57 16.76 14.25 14.66 10.44 10.64

R
6
+
γ

2
+
g

18.43 18.51 16.09 16.43 12.34 12.32

R
7
+
γ

2
+
g

20.59 20.58 18.23 18.48 14.55 14.24

R
8
+
γ

2
+
g

23.05 22.81 20.65 20.71 17.07 -

R
9
+
γ

2
+
g

25.80 - 23.36 23.28 19.89 18.25

R
10

+
γ

2
+
g

28.84 28.14 26.35 25.88 23.01 -

R
11

+
γ

2
+
g

32.17 - 29.62 28.98 26.43 -

R
12

+
γ

2
+
g

35.79 34.31 33.17 32.52 30.14 -

χ 0.55 - 0.29 - 0.74 -

c 18.44 - 9.69 - 15.32 -

δ 3.91 - 1.22 - 9.72 -

q 7.94 - 10.21 - 1.10 -

V0 5.20 - 0.25 - 32.10 -

σ 0.34 - 0.63 - 1.60 -

3.2 Results for the Harmonic oscillator potential

around γ =
π

6

The Ring-shaped potential is used for Os-180, Dy-162,
and Gd-160 nuclei in Sec. (2.3). In Eq. (44), all ground
states, β, and γ bands are labeled by the set of quantum

numbers, n, nγ , nw, L, and the lowest bands are (Chabab
et al., 2015a; Greiner and Maruhn, 1996):

1. The ground-state band is composed by n = 0, nγ =
0, nw = 0.

2. The band is distinguished by n = 1, nγ = 0, nw = 0.

3. The band is characterized by n = 0, nγ = 0 but
nw = 2 for even L levels and nw = 1. for odd L
levels.

In Table 2, σ values (rms) of Ru-100, Pd-114 and Xe-
124 nuclei are small in comparison with those reported in
Ref. (Alimohammadi and Hassanabadi, 2017). Therefore,
there is good agreement between the calculated values and
experimental data. In addition, this good agreement is a
results of the quantum numbers. For example, in Ref.
(Alimohammadi and Hassanabadi, 2017), quantum num-
bers are s, τ and ?, so the energy of different quantum
numbers of the levels is the same. However, in the present
work, the Ring-shaped potential for γ part enables us to
separate energy for every special even and odd levels.

We have also computed the transition rates for the nu-
clei given in Table 4 by using Eq. (49). There is an agree-
ment between some theoretical and experimental values.

3.3 Results of other calculation

The special kind of diagram, which depends on χ, has been
investigated in Ref. (Budaca and Budaca, 2015a). In their
calculations, there are two free parameters besides χ, so
they can compare variations of the parameter in the dif-
ferent diagrams. But our total energy has more than two
free parameters. We have plotted this diagram for the
some nuclei using their obtained parameters as shown in
Tables 1 and 2.

As it is obvious, the reported calculations in the last
sections have some free parameters, such as constant fac-
tor V0, shape deformation parameter q, screening param-
eter δ, and the rigidity parameter χ, that are the same for
both subsection. The others are stiffness of the γ oscilla-
tions in subsection 2.2, and c and s are free parameters
that mentioned in subsection 2.3. The effect of the free pa-
rameters on the total energy of system has been evaluated
by the mentioned equations. The dependence of the sys-
tem’s energy in χ that normalized to the two first ground-
state bands are shown in Figs. 1 to 6 for different nuclei.
According to Figs. 1 to 3 for Os-180, Gd-160, and Dy-162
nuclei, the ground states are not strongly influenced by
χ. While the behavior of the β bands is fundamentally
the same as in the ground band case, there is a difference
between their β and γ-bands. It means that the γ-bands
are more influenced than β-band by χ, and γ-bands are
more variable in energy.

In Figs. 4 to 6, the behavior of all bands and depen-
dence of the system’s energy in χ are closed to each other.
According to Table 2, the value of χ is around 0.5, and
energy in χ → 1 for all figures and all bands vanishes.
Because the Ring-shaped potential is an appropriate po-
tential for γ-stable models, so this potential has better
agreement with experimental data for χ < 0.5.
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Table 2: Comparison of theoretical predictions and experi-
mental data for the ground state, β, and γ bands normalized
to the E(2+

g ) state for Ru-100, Pd-114, and Xe-124 nuclei.

Pd-114 Ru-100 Xe-124
Our

Exp.
Our

Exp.
Our

Exp.
work work work

R
4
+
g

2
+
g

2.65 2.56 2.53 2.27 2.64 2.48

R
6
+
g

2
+
g

4.61 4.51 4.20 3.85 4.60 4.37

R
8
+
g

2
+
g

6.58 6.66 5.78 5.67 6.64 6.58

R
10

+
g

2
+
g

8.40 8.60 7.14 7.85 8.56 8.96

R
0
+
β

2
+
g

2.99 2.62 2.40 2.10 3.70 3.58

R
2
+
β

2
+
g

3.78 4.18 3.16 3.46 4.46 4.60

R
2
+
β

2
+
g

5.07 - 4.33 4.36 5.70 5.69

R
2
+
γ

2
+
g

1.58 2.09 1.62 2.52 1.64 2.39

R
3
+
γ

2
+
g

2.42 3.04 2.40 3.49 2.50 3.59

R
4
+
γ

2
+
g

4.01 3.97 3.85 3.82 4.18 4.06

R
5
+
γ

2
+
g

4.54 4.90 4.25 4.78 4.66 5.19

R
6
+
γ

2
+
g

6.30 5.94 5.73 5.01 6.57 6.06

R
7
+
γ

2
+
g

6.60 6.88 5.90 6.39 6.80 7.27

R
8
+
γ

2
+
g

8.31 7.98 7.24 6.58 8.70 8.23

χ 0.47 - 0.40 - 0.40 -

c 59.29 - 29.88 - 55.00 -

s 1.73 - 20.49 - 22.77 -

δ 0.22 - 0.10 - 0.10 -

q 0.37 - 0.35 - 0.56 -

V0 34.75 - 31.87 - 41.68 -

σ 0.35 - 0.58 - 0.48 -

Table 3: Comparison of theoretical predictions and experi-
mental data of B(E2) transition rates for Os-166, Gd-180, and
Dy-162 nuclei.

B(E2)
Os-166 Gd-180 Dy-162

Our
Exp.

Our
Exp.

Our
Exp.

work work work

4+
g → 2+

g

2+
g → 0+

g

1.38 1.45 1.41 - 1.42 1.42

6+
g → 4+

g

2+
g → 0+

g

1.47 1.15 1.54 - 1.53 1.48

2+
γ → 2+

g

2+
γ → 0+

g

1.42 - 1.43 1.87 1.42 1.78

2+
γ → 4+

g

2+
γ → 0+

g

0.06 - 0.06 0.189 0.07 0.137

Figure 1: The low-lying energy spectrum (vertical axis) given
as function of the rigidity parameter χ (horizontal axis) for Os-
180. The ground band energy curves are visualized as dotted
lines, the β bands are shown by dashed lines, and the solid
lines are associated to the γ band states.

Figure 2: The low-lying energy spectrum (vertical axis) given
as function of the rigidity parameter χ (horizontal axis) for
Dy-162. The ground band energy curves are visualized as dot-
ted lines, the β bands are shown by dashed lines, and the solid
lines are associated to the γ band states.

Figure 3: The low-lying energy spectrum (vertical axis) given
as function of the rigidity parameter χ (horizontal axis) for
Gd-160. The ground band energy curves are visualized as dot-
ted lines, the β bands are shown by dashed lines, and the solid
lines are associated to the γ band states.
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Table 4: Comparison of theoretical predictions and experimental data of B(E2) transition rates for Pd-114, Ru-100, and Xe-124
nuclei.

B(E2)
Pd-114 Ru-100 Xe-124

Our work Exp. Our work Exp. Our work Exp.

4+
g → 2+

g

2+
g → 0+

g

1.30 - 1.30 1.4±0.1 1.35 1.17

6+
g → 4+

g

2+
g → 0+

g

1.49 - 1.52 <4.6±0.1 1.60 1.52±0.10

8+
g → 6+

g

2+
g → 0+

g

1.48 - 1.58 - 1.69 1.14±0.33

10+
g → 8+

g

2+
g → 0+

g

1.40 - 1.59 - 1.71 0.36±0.04

2+
γ → 2+

g

2+
g → 0+

g

1.42 - 1.45 0.9 1.43 0.55±0.09

4+
γ → 4+

g

2+
g → 0+

g

0.25 - 0.50 0.8±0.5 0.26 0.58±0.21

4+
γ → 2+

γ

2+
g → 0+

g

0.50 - 0.48 - 0.54 1.2±0.4

3+
γ → 2+

γ

2+
g → 0+

g

1.74 - 1.78 0.3±0.1 1.77 0.16±0.06

Figure 4: The low-lying energy spectrum (vertical axis) given
as function of the rigidity parameter χ (horizontal axis) for
Ru-100. The ground band energy curves are visualized as dot-
ted lines, the β bands are shown by dashed lines, and the solid
lines are associated to the γ band states.

Figure 5: The low-lying energy spectrum (vertical axis) given
as function of the rigidity parameter χ (horizontal axis) for Pf-
114. The ground band energy curves are visualized as dotted
lines, the β bands are shown by dashed lines, and the solid
lines are associated to the γ band states.

Figure 6: The low-lying energy spectrum (vertical axis) given
as function of the rigidity parameter χ (horizontal axis) for Xe-
124. The ground band energy curves are visualized as dotted
lines, the β bands are shown by dashed lines, and the solid
lines are associated to the γ band states.

On the other hand, the ratio of the excited states of a
ground band that have been normalized to the energy of
the rst excited state is used to dene the range of a rota-
tional deformed and vibrational deformed which are 3.33
and 2.00, respectively. According to the results, Os-180,
Gd-160, and Dy-162 nuclei follow the rotational models.
Also, Pd-114, Ru-100 and Xe-124 nuclei conform vibra-
tional models.

We have investigated another sensitive signature for
triaxiality and axially symmetric structure, that is clearly
the odd-even staggering of the level energies within the
γ-band. It can be obtained by (Chabab et al., 2015a):

S(J) =
E(J+

γ ) + E((J − 2)+γ )− 2E((J − 1)+γ )

E(2+1 )
(52)

Such a quantity measures the displacement of the (J−1)+γ
level relatively to the average of its neighbors, J+

γ and
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(J−2)+γ , normalized to the energy of the first excited state

of the ground band, E(2+1 ). According to Ref. (Chabab
et al., 2015a), it has been found that γ-soft shapes exhibit
staggering whit negative S(J) values at even-J and posi-
tive S(J) values at odd-J spins. We plotted the function
of S(J) for both triaxiality and axially symmetric struc-
ture in Figs. 7 and 8. As shown in Fig. 8, there is a strong
odd-even staggering of theoretical values for every three
isotopes. It has been discovered that in the γ-band, this
reflux of the odd states with the even states can be re-
garded as a strange signature of these solutions and as an
examination whether these models are realistic. But this
occurs for triaxial nuclei and not for axially symmetric
prolate ones. Note that in the axially symmetric prolate
state k is a good quantum number. This quantum number
for the ground and β bands is zero and for the γ band is
two, where both of them are constant. Because of con-
stant value of k, in Fig. 7, S(J) values of the even and
odd state energies are not very different from each other.
But for triaxial nuclei, α is a good quantum number and is
not constant. For the ground and β bands α = L and for
odd and even states of γ band are α = L−1 and α = L−2
respectively, then the α contributes more to the even state
energies than to the odd ones and generating this reverse
effect.

Figure 7: The theoretical values for staggering behavior of
Os-180 (Blue), Gd-160 (Red), and Dy-162 (Black) nuclei.

Figure 8: The theoretical values for staggering behavior of
Ru-100 (Red), Pd-114 (Black), and Xe-124 (Blue) nuclei.

4 Conclusion

In this work, we solved the Bohr Hamiltonian with a gen-
eralized Hulthen potential for the β-part, in the interplay
of γ-stable and γ-rigid collective motions with both the
Harmonic oscillation around γ = 0 and the Ring-shaped

potentials around γ =
π

6
for the γ-part. The model was

applied for Os-180, Dy-162, Gd-160, Ru-100, Pd-114, and
Xe-124 nuclei. According to the results, the outcomes
of the fit shows good agreement with the experimental
data, which arisen from adding two free parameters, V0
and q, to Hulthen potential to control the depth of po-
tential and shaped deformation. Then, numerical calcula-
tions for the excited energy and B(E2) transition rates of
proposed models were calculated and compared with the
experimental data. This model by the rigidity parameter
χ enables a better description of energy spectra for both
of the phase transition from spherical to axially deformed
nuclei (X(3)∪X(5)−H) and from prolate to oblate shapes
(Z(3) ∪ Z(5)−H).
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