Measurement of Radiation and Radioactivity
Maryam Azizi; Ali Biganeh; Omidreza Kakuee; Behjat Ghasemi; Yashar Vosoughi
Abstract
Primary standardization of radioactivity is related to the direct measurement of activity in radioactive decay. A large variety of primary standardization techniques have been developed in the past years. The photon-photon coincidence counting is one of the methods for activity determination. This method ...
Read More
Primary standardization of radioactivity is related to the direct measurement of activity in radioactive decay. A large variety of primary standardization techniques have been developed in the past years. The photon-photon coincidence counting is one of the methods for activity determination. This method is particularly applied for the standardization of I-125 using the detection of X-ray and gamma-ray coincident counting. In this paper, a 2D photon-photon coincidence digital system with two similar 2'' × 2'' NaI(Tl) detectors for absolute activity measurement is developed. The system is established based on a 100 MHz CAEN waveform digitizer (DT5724) which directly records the pre-amplifier output signals of the two NaI(Tl) detectors. The sampled signals was transformed to trapezoidal signals using pulse height analyzer firmware and coincidence events were recorded in a list file. The list file was analyzed offline using a Matlab code to realize correlated gama lines of Co-60 source. The Volkovitsky formulas were used for the activity calculation and the details of the experimental setup were also discussed. Standardization of the two Co-60 standard sources was performed using this system. Results are in good agreement with the reference activity of Co-60 sources. The presented formula can be modified for absolute calibration of the other medical radioisotopes. The technique can be generalized for absolute activity measurement of I-125 which uses for ophthalmic plaque radiation therapy.